ON THE SPECTRUM OF THE SUM OF GENERATORS FOR A FINITELY GENERATED GROUP

BY

PIERRE DE LA HARPE

Section de mathématiques, C. P. 240, 1211 Genève 24, Switzerland

AND

A. GUYAN ROBERTSON

Mathematics Department, University of Newcastle, N.S. W. \$308, Australia

AND

ALAIN VALETTE

lnstitut de mathdmatiques, Chantemerle \$0, \$000 Neuch~tel, Switzerland

ABSTRACT

Let Γ be a finitely generated group. In the group algebra C[Γ], form the average h of a finite set S of generators of Γ . Given a unitary representation π of Γ , we relate spectral properties of the operator $\pi(h)$ to properties of Γ and π .

For the universal representation π_{un} of Γ , we prove in particular the following results. First, the spectrum $Sp(\pi_{un} (h))$ contains the complex number z of modulus one iff $Sp(\pi_{un}(h))$ is invariant under multiplication by z, iff there exists a character $\chi: \Gamma \to \mathbb{T}$ such that $\chi(S) = \{z\}$. Second, for $S^{-1} = S$, the group Γ has Kazhdan's property (T) if and only if 1 is isolated in $Sp(\pi_{un}(h))$; in this case, the distance between 1 and other points of the spectrum gives a lower bound on the Kazhdan constants. Numerous examples illustrate the results.

Received June 19, 1991 and in revised form December 17, 1991

Introduction

Let Γ be a finitely generated group, and let S be a finite generating set. Assume for the moment that $1 \notin S$ and that S is symmetric $(S^{-1} = S)$. On the Cayley graph $G(\Gamma, S)$, consider the nearest neighbour isotropic random walk: the transition probability $M_{\gamma,\gamma'}$ between two vertices γ,γ' of the graph is $|S|^{-1}$ if they are nearest neighbours (namely here if $\gamma \gamma'^{-1} \in S$) and zero otherwise. The matrix $M = (M_{\gamma,\gamma'})_{\gamma,\gamma'\in\Gamma}$ acts naturally as a bounded linear operator on the Hilbert space $l^2(\Gamma)$. In two pioneering papers [Ke1], [Ke2], Kesten started to investigate the relations between properties of the group Γ and spectral properties of transition operators such as M . He showed for example that

$$
\frac{2\sqrt{|S|-1}}{|S|}\leq \|M\|\leq 1
$$

with equality on the right if and only if Γ is amenable (a condition independent of the choice of S), and with equality on the left if and only if Γ is a free group on a set S_+ such that $S = S_+ \cup (S_+)^{-1}$.

Our purpose here is to modify Kesten's starting point in two ways:

- (1) We consider a finite generating set S which need not be symmetric.
- (2) We consider an arbitrary unitary representation π of Γ on a Hilbert space \mathcal{H}_{π} rather than only the left regular representation λ of Γ on $l^2(\Gamma)$.

Denote by $\mathbb{C}[\Gamma]$ the complex group algebra. To any representation π of Γ as above is associated a *-representation of C[Γ] on the same Hilbert space \mathcal{H}_{π} , also denoted by π , and defined by $\pi(f) = \sum_{\gamma \in \Gamma} f(\gamma)\pi(\gamma)$ for all $f \in \mathbb{C}[\Gamma]$.

Given S as in (1) , we set

$$
h=\frac{1}{|S|}\sum_{s\in S}s\in\mathbb{C}[\Gamma].
$$

In case S is symmetric and $1 \notin S$, observe that $\lambda(h)$ is precisely the operator M appearing in Kesten's papers. In the setting of (1) and (2) above, our programme is to investigate the relations between properties of Γ and π on one hand, and spectral properties of $\pi(h)$ on the other hand.

There are several interesting examples of such π , besides the left regular representation λ . One is the universal representation π_{un} , which is the direct sum of all cyclic representations of Γ (up to unitary equivalence). Other are characters $\Gamma \to \{z \in \mathbb{C}: |z|=1\}$, including the trivial representation χ_1 defined by $\chi_1(\gamma) = 1$ for all $\gamma \in \Gamma$.

To state our first result, we need the following terminology. Given a representation π of Γ on a Hilbert space $\mathcal H$ and a finite generating set S as above, we define the Kazhdan constant

$$
\kappa(\pi, S) = \inf_{\xi \in \mathbb{S}^1(\mathcal{H})} \max_{s \in S} ||\pi(s)\xi - \xi||
$$

where we denote by $S^1(\mathcal{H})$ the **unit sphere** $\{\xi \in \mathcal{H}: ||\xi|| = 1\}$. This constant depends on S, but the fact that it is zero or not does not; indeed $\kappa(\pi, S) = 0$ if and only if χ_1 is weakly contained in π . The latter means that $\kappa(\pi, F) = 0$ for any finite subset F of Γ . We denote by $\pi \frac{1}{1}$ the restriction of π to the orthogonal complement in H of the space of vectors fixed by Γ . In Section A, we shall prove.

PROPOSITION I: Let π be a representation of Γ on a Hilbert space \mathcal{H} .

- (1) $1 \in Sp \pi(h)$ if and only if χ_1 is weakly contained in π .
- (2) 1 is an eigenvalue of Sp $\pi(h)$ if and only if χ_1 is contained in π .
- (3) If $1 \in$ Sp $\pi(h)$ and $1 \notin$ Sp $\pi^{\perp}(h)$, then 1 is an isolated point of both Sp $\pi(h)$ and Sp $\pi(\frac{1}{2}(h+h^*))$.
- (4) If $\kappa(\pi, S) > 0$, then Sp $\pi(h)$ is disjoint from the open disc

$$
\{z \in \mathbb{C}: |z-1| < \kappa(\pi, S)^2/(2|S|)\}.
$$

Assume moreover that $S^{-1} = S$.

- (5) If 1 is isolated in Sp $\pi(h)$, then $1 \notin$ Sp $\pi \frac{1}{1}(h)$.
- (6) If Sp $\pi(h) \subset [-1,1 \varepsilon]$ for some $\varepsilon > 0$ then $\kappa(\pi, S) \geq \sqrt{2\varepsilon}$.

We show by an example the assumption $S^{-1} = S$ cannot be removed from (5). Actually we construct an infinite dimensional irreducible representation π of the free group \mathbb{F}_2 on a two generator set $S = \{a, b\}$ such that $\text{Sp } \pi(h) = \{1\}$. Viewing \mathbb{F}_2 as a normal subgroup of index 12 in $SL(2,\mathbb{Z})$, inducing and decomposing, we obtain an infinite dimensional irreducible representation of $SL(2, \mathbb{Z})$ which weakly contains χ_1 . This answers, almost fortuitously, a question of Bekka in [Bek]; see the end of Section A.

In Sections B and C, we deal with the peripheral spectrum of $\pi(h)$, that is with the intersection of Sp $\pi(h)$ with the unit circle T. We prove, for $z \in T$, results analogous to those of Proposition I for +1. We also study rotational symmetries of spectra. Writing Sp h rather then $\text{Sp } \pi_{un}(h)$, we give the following characterization (see Propositions 3 and 5).

PROPOSITION II: Let Γ , *S* and *h* be as above and let $\mathcal G$ be the Cayley graph of *P* with respect to $S \cup S^{-1}$. The peripheral spectrum of h is a closed subgroup *of* **T***. Moreover, for* $|z| = 1$ *, the following are equivalent:*

- (i) $z \in$ Sp h ,
- (ii) Sp *h is invariant* under *multiplication by z,*
- (iii) there is a character $\chi: \Gamma \to \mathbb{T}$ such that $\chi(S) = \{z\}$.

Under conditions (i) to (iii), it is also true that $Sp(\lambda(h))$ is invariant under *multiplication by z. If* $z = -1$ *, conditions (i) to (iii) are also equivalent to* (iv) *the graph 9 is bicolorable.*

Section D is about Kazhdan's property (T). Given a group Γ and a set of generators S we introduce the Kazhdan constants

$$
\kappa(\Gamma,S)=\inf \kappa(\pi,S)
$$

where the infimum is taken over all representations π of Γ in a separable Hilbert space which have no nonzero fixed vector, and

$$
\hat{\kappa}(\Gamma, S) = \inf \{ \kappa(\pi, S) : \pi \in \Gamma, \pi \neq \chi_1 \}
$$

where $\hat{\Gamma}$ denotes the unitary dual of Γ , namely the set of all (equivalence classes of) irreducible representations of Γ . Here again, the fact that any of these constants are zero or not does not depend on S. Indeed $\kappa(\Gamma, S) > 0$ if and only if Γ had Kazhdan's Property (T): see [Kaz], [HaV]. It is also known that $\hat{\kappa}(\Gamma, S) > 0$ if and only if $\kappa(\Gamma, S) > 0$ [DeK: Lemme 1]. More precisely, one has obviously $\hat{\kappa}(\Gamma, S) \geq \kappa(\Gamma, S)$, possibly with strict inequality, and one may show [BaH] that $\kappa(\Gamma, S) \geq (2|S|)^{-\frac{1}{2}} \hat{\kappa}(\Gamma, S)$. The following result improves a previous result of the third author [Val].

PROPOSITION III: *(1) Assume that F has Property (T), and set*

$$
\varepsilon = \frac{\hat{\kappa}(\Gamma, S)^2}{2|S|}.
$$

For any z in the peripheral spectrum of h (in particular for $z = 1$), the set

$$
\text{Sp } h \cap \{w \in \mathbb{C} : 0 < |w - z| < \varepsilon\}
$$

is empty. Moreover, the eardinality of the peripheral spectrum is at most equal to π/Arcsin ($\epsilon/2$).

(2) We assume that $S^{-1} = S$ and we choose a real number $\epsilon > 0$. Suppose *moreover that*

 $either$ Sp $h \subset [-1, 1-\varepsilon] \cup \{1\}$ or $-1 \in$ Sp $h \subset \{-1\} \cup [-1+\varepsilon, 1]$.

Then Γ has Property (T) and $\kappa(\Gamma, S) \geq \sqrt{2\varepsilon}$.

In particular, when $S^{-1} = S$, we see that Γ has Property (T) if and only if 1 is *an isolated point in* Sp h.

In the final Section E of this paper, we consider a discrete group Γ with Property (T). It was shown by Wang and more recently reproved by Wassermann that Γ has at most finitely many (inequivalent) irreducible representations of any given dimension $m < \infty$ (see Theorems 2.5 and 2.6 of [Wan] and Corollary 2 of [Was]). We apply the preceding theory to obtain an asymptotic bound for the number Irrep_r (m) of irreducible representations of Γ of degree at most m, namely:

PROPOSITION IV: Let Γ be a discrete Kazhdan group, with a given finite sym*metric generating subset S; then*

 $Irrep_{\Gamma}(m) = 0(e^{Am^2})$

for some *constant A depending on F and S.*

A. The spectrum near 1

We begin by briefly discussing group C^* -algebras; although they do not play a fundamental role in this paper, they do provide a convenient framework.

Let π be a representation of the group Γ on a Hilbert space \mathcal{H} (in this paper, all representations are unitary). The norm closure of $\pi(C[\Gamma])$ in the algebra of all bounded linear operators on H is a C^* -algebra denoted by $C^*_\pi(\Gamma)$. For example, if π is the universal representation π_{un} of Γ , we obtain the full C^{*}-algebra of Γ . We shall follow common practice and denote it simply by $C^*(\Gamma)$. It has the following universal property: every representation π of Γ extends to a *-representation $C^*(\Gamma) \to C^*_\pi(\Gamma)$, again denoted by π [Dix: 13.9.3]. Considering the left regular representation λ , we obtain the reduced C*-algebra $C_{\lambda}^{*}(\Gamma)$. It follows from a standard result of Hulanicki [Ped: 7.3.9] that the canonical *-homomorphism $\lambda: C^*(\Gamma) \to C^*_\lambda(\Gamma)$ is an isomorphism if and only if Γ is amenable.

From now on we assume that Γ is given together with a finite set S of generators and we consider the operator

$$
h = \frac{1}{|S|} \sum_{s \in S} s \in C^*(\Gamma).
$$

Clearly $||h|| \leq 1$, and h is self-adjoint if and only if S is symmetric (i.e. $S = S^{-1}$). We denote by Sp x the spectrum of an element x of a C^* -algebra.

PROPOSITION 1: $If \chi: \Gamma \to \{z \in \mathbb{C}: |z|=1\}$ *is a character of* Γ *, then* $\chi(h) \in \text{Sp } h$ *. In particular the spectrum* of *h always contains 1.*

Proof. If $x = \sum_{\gamma \in \Gamma} z_{\gamma} \gamma \in C^*(\Gamma)$ is an element of $\mathbb{C}[\Gamma]$, then

$$
\chi(x)=\sum_{\gamma\in\Gamma}z_{\gamma}\chi(\gamma).
$$

In particular $\chi(h - \chi(h)) = 0$ and therefore $h - \chi(h)$ is not invertible in $C^*(\Gamma)$. The second assertion follows with $\chi=\chi_1$.

Let *H* be a Hilbert space. We denote by $S^1(\mathcal{H})$ the unit sphere $\{\xi \in \mathcal{H}: ||\xi|| =$ 1}. Let x be an operator on H . Recall that Sp $x \neq \emptyset$ if and only if $H \neq \{0\}$. We say that x is a contraction if $||x|| \leq 1$. In the following four lemmas, we collect standard material.

LEMMA 1: Let x be a contraction on a Hilbert space H , let $\xi \in S^1(\mathcal{H})$ and let ε *be a real number,* $\varepsilon > 0$ *.*

- (1) If $||x\xi-\xi|| \leq \varepsilon$, then $||\frac{1}{2}(x+x^*)\xi-\xi|| \leq \sqrt{2\varepsilon}$.
- (2) If $\|\frac{1}{2}(x+x^*)\xi-\xi\|\leq \varepsilon$, then $\|x\xi-\xi\|\leq \sqrt{2\varepsilon}$.

Proof. If $||x\xi - \xi|| \leq \varepsilon$, then $||x\xi|| \geq ||\xi|| - ||x\xi - \xi|| \geq 1 - \varepsilon$ and

$$
(1-\varepsilon)^2 + 1 - 2\mathrm{Re}\langle\xi|x\xi\rangle \le ||x\xi - \xi||^2 \le \varepsilon^2
$$

so that $\text{Re}\langle \xi | x \xi \rangle \geq 1 - \varepsilon$ and

$$
1 - \langle \xi | \frac{1}{2} (x + x^*) \xi \rangle = 1 - \text{Re} \langle \xi | x \xi \rangle \le \varepsilon.
$$

Consequently

$$
\|\frac{1}{2}(x+x^*)\xi - \xi\|^2 \le \|x\|^2 + 1 - 2\langle \xi | \frac{1}{2}(x+x^*)\xi \rangle
$$

$$
\le 2(1 - \langle \xi | \frac{1}{2}(x+x^*)\xi \rangle)
$$

$$
\le 2\epsilon
$$

and (1) holds.

Similarly, under the hypothesis of (2), one has $\text{Re}\langle \xi | x \xi \rangle \geq 1 - \varepsilon$ and

$$
||x\xi - \xi||^2 \le 2(1 - \text{Re}\langle \xi | x\xi \rangle) \le 2\varepsilon
$$

so that (2) holds. \blacksquare

Remark: It is easy to see (with $H = C$) that the constant $\sqrt{2\varepsilon}$ in Claim (2) is best possible. However the constant in Claim (1) is not. We do not know the best constant here.

LEMMA 2: Let x be a contraction on a Hilbert space \mathcal{H} .

- (1) $\text{Ker}(x 1) = \text{Ker}(\frac{1}{2}(x + x^*) 1) = \text{Ker}(x^* 1).$
- (2) $1 \in Sp \times H$ *if and only if there exists a sequence* (ξ_i) *of vectors in* $S^1(\mathcal{H})$ *such* that $||x\xi_i - \xi_j|| \rightarrow 0$ as $j \rightarrow \infty$.
- (3) $1 \in$ Sp $x \Leftrightarrow 1 \in$ Sp $(\frac{1}{2}(x + x^*)) \Leftrightarrow 1 \in$ Sp x^* .

Proof: Claim (1) follows from Lemma 1 with $\varepsilon = 0$.

To prove the non-trivial implication in Claim (2), suppose that $1 \in Sp(x)$. If the range of $x - 1$ is not dense in H , then $Ker(x^* - 1) \neq \{0\}$. But $Ker(x - 1) =$ $Ker(x^* - 1)$ by (1), so that any sequence in $Ker(x - 1) \cap S^1(\mathcal{H})$ does the job. If the range of $x - 1$ is dense in H , then inf{ $||(x - 1)\xi||$: $\xi \in S^1(\mathcal{H})$ } = 0 (otherwise $x - 1$ would be invertible), and the existence of an appropriate sequence (ξ_j) is again obvious.

 $Claim (3)$ is a straightforward consequence of $Claim (2)$ and of Lemma 1.

LEMMA 3: *Consider a Hilbert space* H , a vector $\xi \in S^1(\mathcal{H})$, a real number $\varepsilon \geq 0$, an integer $n \geq 1$, a sequence y_1, \ldots, y_n of contractions on H , and set

$$
x=\frac{1}{n}(y_1+\cdots+y_n).
$$

If $||x\xi - \xi|| \leq \varepsilon$, then $||y_j\xi - \xi|| \leq \sqrt{2n\varepsilon}$ for all $j \in \{1, ..., n\}$. In particular

$$
\operatorname{Ker}(x-1) = \bigcap_{1 \leq j \leq n} \operatorname{Ker}(y_j-1).
$$

Proof: As in the proof of Lemma 1, we compute

$$
1-\varepsilon \leq \mathrm{Re}\langle \xi | x \xi \rangle = \frac{1}{n} \sum_{k=1}^{n} \mathrm{Re}\langle \xi | y_{k} \xi \rangle.
$$

As $\text{Re}\langle \xi | y_k \xi \rangle \leq 1$ for all $k \in \{1, \ldots, n\}$, it follows that

$$
\operatorname{Re}\langle \xi | y_j \xi \rangle \geq 1 - n \varepsilon
$$

and thus

$$
||y_j\xi-\xi||^2\leq 2n\varepsilon
$$

for all $j \in \{1, \ldots, n\}$.

LEMMA 4: Given Γ , S and π as above, $\kappa(\pi, S) = 0$ if and only if the trivial *representation* χ_1 of Γ *is weakly contained in* π .

Proof. For each integer $n \geq 0$, denote by B_n the set of those $\gamma \in \Gamma$ for which there exists a sequence s_1, \ldots, s_n of generators in $S \cup S^{-1}$ such that $\gamma = s_1 \cdots s_n$.

Consider a real number $\epsilon > 0$ and a vector $\xi \in S^1(\mathcal{H})$ such that

$$
\max_{s\in S} \|\pi(s)\xi-\xi\|\leq \kappa(\pi,S)+\varepsilon.
$$

For any $\gamma = s_1 \cdots s_n \in B_n$, one has

$$
\|\pi(\gamma)\xi - \xi\| \le \sum_{j=1}^n \|\pi(s_1 \cdots s_{j-1})(\pi(s_j)\xi - \xi)\|
$$

$$
\le n(\kappa(\pi, S) + \varepsilon).
$$

It follows that

$$
\inf_{\xi \in S^1(\mathcal{H})} max_{\gamma \in B_n} ||\pi(\gamma)\xi - \xi|| \leq n\kappa(\pi, S).
$$

In particular, the lemma is nothing but a reformulation of the definitions.

Remark: It follows from Lemma 4 that the condition $\kappa(\pi, S) = 0$ does not depend on the finite set S of generators.

Proof of Proposition I in the Introduction: Claim (1) follows from Lemmas 2(2) and 3 applied to

$$
x = \pi(h) = \frac{1}{|S|} \sum_{s \in S} \pi(s),
$$

and from Lemma 4.

Claim (2) follows from the last assertion of Lemma 3.

Let us denote by π_1^{\pm} the restriction of π to the space \mathcal{H}_{1}^{\pm} of $\pi(\Gamma)$ -fixed vectors.

Observe that Sp $\pi(h) =$ Sp $\pi_1^{-1}(h) \cup$ Sp $\pi_1^{\perp}(h)$. Observe also that Sp $\pi_1^{-1}(h)$ is either empty, if $\mathcal{H}^{\pm} = \{0\}$, or reduced to $\{1\}$, if $\mathcal{H}^{\pm} \neq \{0\}$. The first conclusion of Claim (3) follows from this. Moreover $1 \notin Sp \pi^{\perp}_{1}(h)$ implies that $1 \notin$ Sp $\pi \frac{1}{1} (\frac{1}{2}(h + h^*))$ by Lemma 2 (3), and the second conclusion of Claim (3) follows similarly.

Write δ for $\kappa(\pi, S)^2/(2|S|)$ and choose $\xi \in S^1(\mathcal{H})$. By the definition of $\kappa(\pi, S)$, there exists $s \in S$ such that

$$
\|\pi(S)\xi-\xi\|\geq \kappa(\pi,S)=\sqrt{2|S|\delta}.
$$

Lemma 3 shows that $\|\pi(h)\xi - \xi\| \ge \delta$. Choose now $w \in \mathbb{C}$ such that $|w| < \delta$. Then

$$
\|\pi(h)\xi - (1+w)\xi\| \ge \delta - |w|.
$$

As π is a unitary representation, one has $\kappa(\pi, S^{-1}) = \kappa(\pi, S)$. Thus one has also

$$
\|\pi(h^*)\xi-(1+\bar{w})\xi\|\geq \delta-|w|.
$$

Since these hold for all $\xi \in S^1(\mathcal{H})$, the operator $\pi(h) - (1 + w)$ is invertible, and Claim (4) holds.

If $S^{-1} = S$ and 1 is isolated in Sp $\pi(h)$, we may consider the nonzero spectral projection p of the self-adjoint operator $\pi(h)$ corresponding to the isolated point 1 in the spectrum of $\pi(h)$. The restriction of $\pi(h)$ to pH coincides with the identity, and the restriction of $\pi(h)$ to $(1-p)\mathcal{H}$ has its spectrum disjoint from ${1}.$ In other words, one has $p\mathcal{H} = \mathcal{H}^{\pm}_1$ and $1 \notin Sp \pi^{\pm}_1(h)$.

The hypothesis of (6) and spectral theory imply that, for all $\xi \in S^1(\mathcal{H})$, one has

$$
\mathrm{Re}\langle \xi | \pi(h)\xi \rangle = \langle \xi | \pi(h)\xi \rangle \leq 1 - \varepsilon.
$$

Thus there exists $s \in S$ such that

$$
\operatorname{Re}\langle \xi | \pi(s)\xi \rangle \leq 1-\varepsilon
$$

and this implies that $\|\pi(s)\xi-\xi\|^2=2(1-\text{Re}\langle\xi|\pi(s)\xi\rangle)\geq 2\varepsilon$.

Remark: In Proposition I (4), assume moreover that $S^{-1} = S$ and that $\pi(S)$ does not contain any element of order 2. Then

$$
\mathrm{Sp}\,\,\pi(h)\subset [-1,1-\kappa(\pi,S)^2/|S|].
$$

The point is that $2|S|$ can be replaced by |S|. For if $s \in S$ is chosen with $\|\pi(s)\xi-\xi\|^2= 2-\langle (\pi(s)+\pi(s^{-1}))\xi|\xi\rangle \ge \kappa(\pi,S)^2$ then $\langle (\pi(s)+\pi(s^{-1}))\xi|\xi\rangle \le$ $2 - \kappa(\pi, S)^2$, so that $\langle \pi(h)\xi|\xi\rangle \leq 1 - \kappa(\pi, S)^2/|S|$.

SOME CONSEQUENCES OF PROPOSITION I (1).

(a) When π is the left regular representation λ of Γ , Proposition I (1) gives Kesten's characterization of amenability [Ke2]:

$$
1 \in \text{Sp } \lambda(h)
$$
 if and only if Γ is amenable.

Indeed, Γ is amenable if and only if χ_1 is weakly contained in λ , by a classical result of Hulanicki [Hul]. For a generalization of Proposition I (1) see also Theorem 1 in [SOW].

(b) For any representation π of Γ , Bekka has introduced a notion of amenability, and π is amenable if and only if χ_1 is weakly contained in $\pi \otimes \bar{\pi}$, where $\bar{\pi}$ denotes the conjugate of π . (See [Bek: Def. 1.1 and Th. 5.1]; for $\bar{\pi}$, see e.g. [Dix: 13.1.5].) As $\lambda \otimes \overline{\lambda}$ is weakly equivalent to λ [Dix: 13.11.3], it follows that λ is amenable if and only if Γ is amenable. From Proposition I (1) of Proposition 2, one has

 $1 \in Sp((\pi \otimes \overline{\pi})(h))$ if and only if π is amenable.

For example, let α be the adjoint representation of Γ on $l^2(\Gamma - \{1\})$ defined by

$$
(\alpha(\gamma)\xi)(\gamma_1)=\xi(\gamma^{-1}\gamma_1\gamma);
$$

then Theorem 2.4 of [Bek] states that $1 \in Sp((\alpha \otimes \bar{\alpha})(h))$ if and only if Γ is strongly inner amenable (namely "inner amenable" in the sense of [BeH]).

Similarly, one can see that 1 is an eigenvalue of $(\pi \otimes \overline{\pi})(h)$ if and only if π has a finite dimensional subrepresentation (see the remark following Lemma 9 below).

Remark on Laplacians: Let us now explain how h is related to a "combinatorial Laplacian". Let first G be a graph without loops or multiple edges (the graph is finite or infinite, and non-oriented). We denote by G^0 the set of vertices of G , by $l^2(G^0)$ the space of square-summable functions from G^0 to $\mathbb C$, and by $(e_v)_{v\in G^0}$ the canonical orthonormal basis for the latter space. The adjacency matrix $A = (A_{v,w})_{v,w \in \mathcal{G}^0}$ of $\mathcal G$ is defined by $A_{v,w} = 1$ if $v \neq w$ and there is an edge between v and w, and by $A_{v,w} = 0$ otherwise.

We assume from now on that G has bounded degree, namely that the number of neighbours $D_v = \sum_{w \in G^0} A_{v,w}$ of a vertex v is bounded by some D_{max} . The degree operator is the bounded self-adjoint operator D on $l^2(G^0)$, defind by $De_v = D_v e_v$ for all $v \in \mathcal{G}^0$. As $\mathcal G$ has bounded degree, the matrix A defines a bounded selfadjoint operator on $l^2({\cal G}^0)$, denoted again by A. The (combinatorial) Laplacian Δ *c* of G is defined by

$$
\Delta_{\mathcal{G}}=D-A.
$$

In particular, let Γ be a group generated by a symmetric finite set S such that $1 \notin S$. Let $\mathcal{G} = \mathcal{G}(\Gamma, S)$ be the corresponding Cayley graph, defined by $\mathcal{G}^0 = \Gamma$ and $A_{\gamma_1,\gamma_2} = 1$ if and only if $\gamma_1\gamma_2^{-1} \in S$. As $\lambda(h) = \frac{1}{|S|} \sum_{s \in S} \lambda(s)$, one has

$$
\Delta_{\mathcal{G}}=|S|-\sum_{s\in S}\lambda(s)=|S|(1-\lambda(h)).
$$

We define more generally

$$
\Delta = |S|(1-h) \in C^*(\Gamma)
$$

so that $\Delta_{\mathcal{G}} = \lambda(\Delta)$.

It is important that Δ is a positive element of $C^*(\Gamma)$. We shall express some results in terms of h and some others with Δ . Upon scaling and translating we could easily express all results for both h and Δ .

Examples:

(1) Consider an integer $d \geq 1$, the free abelian group \mathbb{Z}^d , and the standard set $S = \{s_1^{\pm}, \ldots, s_d^{\pm}\}\$ of generators having $d-1$ coordinates zero and one coordinate 1 or -1. Then Sp $\lambda(\Delta) = [0, 4d]$, as can be viewed as follows; see also [MOW: 7.B].

For each $\alpha \in \mathbb{R}$, define a character χ_{α} of \mathbb{Z}^d by

$$
\chi_{\alpha}(s_i^{\pm})=e^{\pm i\alpha}, \quad j=1,\ldots,d.
$$

It follows from Proposition 1 that

$$
\frac{1}{2d} \sum_{s \in S} \chi_{\alpha}(s) = \cos \alpha \in \text{Sp } h.
$$

Thus Sp $h = [-1,1]$ and Sp $\Delta = [0,4d]$. As \mathbb{Z}^d is amenable, $\lambda(h)$ and h have the same spectrum.

(2) Let Γ be the non-abelian free group on a free set S_+ of d generators, and consider the symmetric set $S = S_+ \cup S_+^{-1}$, of cardinality $N = 2d$. Then

$$
Sp \lambda(\Delta) = [N - 2\sqrt{N-1}, N + 2\sqrt{N-1}].
$$

Observe that the Cayley graph $G(\Gamma, S)$ is the homogeneous tree of degree N , so that it is easy to give a meaning to the above formula for any integer N, even or odd; this formula is indeed a result of Kesten [Kel]. See also [Pat: 4.31].

On the other hand the canonical map sending the generators of S to the corresponding generators of \mathbb{Z}^d in example (1) extends to a *homomorphism of $C^*(\Gamma)$ onto $C^*(\mathbb{Z}^d)$. It follows that $Sp(\Delta) = [0, 4d]$.

(3) If Γ is the non-abelian free group on d generators s_1, \ldots, s_d and $S =$ $\{s_1,\ldots,s_d\}$, so that $S^{-1} \neq S$, then

$$
Sp \, h = \{ z \in \mathbb{C} : |z| \leq 1 \}.
$$

For if $z \in \mathbb{C}, |z| \leq 1$, there exists $z_j \in \mathbb{C}, |z_j| = 1$ $(j = 1, ..., d)$ such that

$$
z=\frac{1}{d}(z_1+\cdots+z_d).
$$

Let χ be the character of Γ defined by $\chi(s_j) = z_j$ for $j = 1, \ldots, d$. Then $z = \chi(h) \in \text{Sp } h$ by Proposition 1.

(4) Choose an integer $k \geq 2$, let $\Gamma = \mathbb{Z}/k\mathbb{Z} * \cdots * \mathbb{Z}/k\mathbb{Z}$ (*r* times), identify each factor $\Gamma_j = \mathbb{Z}/k\mathbb{Z}$ of the free product to a subgroup of Γ , and define

$$
S=\bigcup_{1\leq j\leq r}(\Gamma_j-\{1\}).
$$

If $r \geq 2$, then

$$
Sp \, h = [-1/(k-1),1]
$$

by [Mlo: Prop. 3]. Note that this set is independent of r. Let $\rho = ((k-1)(r-1))^{1/2}$ and note that $|S| = r(k-1)$. By [IoP: Th. 3] or by [KuS: Th. 1], one has

$$
\operatorname{Sp} \lambda(h) = \left\{ \begin{array}{l} \left[\frac{k-2-2\rho}{|S|}, \frac{k-2+2\rho}{|S|} \right], & \text{if } k \le r, \\ \left\{ \frac{-1}{k-1} \right\} \cup \left[\frac{k-2-2\rho}{|S|}, \frac{k-2+2\rho}{|S|} \right], & \text{if } k > r. \end{array} \right\}
$$

If Γ is the free product $\Gamma_1 * \cdots * \Gamma_r$ of r finite groups $\Gamma_1, \ldots, \Gamma_r$, each of order k, and if $S = \bigcup_{1 \leq j \leq r} (\Gamma_j - \{1\})$ as above, then Sp $\lambda(h)$ remains the same, as noticed in $[CS2: §4.2]$ (the reason being that the respective Cayley graphs are isomorphic).

Notice in this example the appearance of isolated points in Sp $\lambda(h)$. That these also occur in the case of a free product of two finite groups of distinct order was explicitly worked out in [CSI: Theorem 1].

- (5) Let Γ be a finite group and let S be a union of conjugacy classes of Γ such that $S^{-1} = S$. It is easy to write the spectra of the corresponding Δ in terms of the values on $s \in S$ of the irreducible characters of Γ . Several examples are worked out in Chapter 8 of [Lub].
- (6) Let Γ be a group generated by a finite symmetric set $S^{-1} = S$, so that $\lambda(\Delta)$ is the combinatorial Laplacian of the Cayley graph $G(\Gamma, S)$. What we have already observed just after the proof of Proposition I can be reformulated as

 Γ is non-amenable if and only if $Sp \lambda(\Delta) \subset [\varepsilon, 2|S|]$ for some $\varepsilon > 0$.

The last formulation carries over to other graphs, and one may estimate ε in terms of an appropriate "isoperimetric constant" of the graph; see [Ger: Th. 2] and [BMS].

(7) Consider an integer *l*, the free group Γ on a set $S_+ = \{s_1, \ldots, s_l\}$ of *l* generators, the symmetric set $S = S_+ \cup (S_+)^{-1}$, and let

$$
h=\frac{1}{2l}\sum_{s\in S}s\in C^*(\Gamma)
$$

be as usual. Consider also a set $\{\varphi_1,\ldots,\varphi_l\}$ of isometries of the sphere S². There is a corresponding action of Γ on S² whereby s_j acts as φ_j , and consequently a representation π of Γ on the Hilbert space

$$
L_0^2(S^2) = \left\{ f \in L^2(S^2) : \int_{S^2} f(x) d\mu(x) = 0 \right\}
$$

where μ denotes the rotation-invariant Lebesgue measure on S^2 . It can be shown in this case that

$$
\|\pi(h)\| \ge \frac{1}{l}\sqrt{2l-1}.
$$

In case $l = (p + 1)/2$ for a prime number $p \equiv 1 \pmod{4}$, a deep theorem of Lubotzky, Phillips and Sarnak shows that one may choose the φ'_i s such that

$$
\|\pi(h)\| = \frac{2\sqrt{p}}{p+1}
$$

We refer to [CdV].

EXAMPLES FOR FREE GROUPS AND FOR $SL_2(\mathbb{Z})$.

Let us first construct an irreducible representation π of the free group \mathbb{F}_2 on two generators s_1 , s_2 which shows that the hypothesis $S^{-1} = S$ cannot be removed from Claim (5) of Proposition I.

Set $\mathcal{H} = L^2[0, 1]$. Let V be the Volterra integral operator defined by

$$
(V\xi)(\alpha) = \int_0^\alpha \xi(\beta)d\beta
$$

for all $\xi \in L^2[0,1]$ and for all $\alpha \in [0,1]$. Set

$$
x = (1 + V)^{-1}.
$$

It is known that Sp $x = \{1\}$, that x has no eigenvector and that $||x|| = 1$; see Number 148 and Problem 150 of [Hal]. Let $x = u|x|$ be the polar decomposition of x. As $|x|$ is a contraction, one may define two unitary operators

$$
v_1 = |x| + i\sqrt{1-|x|^2}
$$
 and $v_2 = |x| - i\sqrt{1-|x|^2}$.

If we set $u_1 = uv_1$ and $u_2 = uv_2$, one has

$$
x=\frac{1}{2}(u_1+u_2).
$$

Define the representation π of \mathbb{F}_2 on \mathcal{H} by

$$
\pi(s_j)=u_j, \quad j=1,2
$$

so that $x = \pi(h)$. Then 1 is of course isolated in Sp $\pi(h) = \{1\}$, but $\mathcal{H} = \mathcal{H}_{0}^{\perp}$ by Proposition I(2).

Let us now show that π is irreducible. We shall use the fact (discussed in Number 151 of $[Ha]]$) that any subspace of H which is invariant under the Volterra integration operator V is one of

$$
\mathcal{H}_{\alpha} = \{ \xi \in L^2[0,1]; \xi(\beta) = 0 \text{ for almost all } \beta \in [0,\alpha] \}
$$

for some $\alpha \in [0, 1]$. Similarly, any subspace of H invariant under V^* is one of

$$
\mathcal{H}^{\alpha} = \{ \xi \in L^{2}[0,1]; \xi(\beta) = 0 \text{ for almost all } \beta \in [\alpha,1] \}
$$

for some $\alpha \in [0, 1]$. It follows that the C^{*}-algebra $C^*(V, V^*)$ generated by V and V^* acts irreducibly on H . As $(1 + V)^{-1} = \frac{1}{2}(\pi(s_1) + \pi(s_2))$, the C^* -algebra $C^*_\pi(\mathbb{F}_2)$ contains $C^*(V, V^*)$, and it follows that the representation π is indeed irreducible.

Let us denote by $K(\mathcal{H})$ the algebra of all compact operators on \mathcal{H} . Since $C^*(V, V^*)$ is a subalgebra of $K(\mathcal{H})$ that acts irreducibly on \mathcal{H} , we have $C^*(V, V^*) = K(\mathcal{H})$ by [Dix: 4.1.6]. From that it follows that $C^*_\pi(\mathbb{F}_2)$ is the linear span of $K(\mathcal{H})$ and of the identity. Consequently, the only irreducible representations of \mathbb{F}_2 which are weakly contained in π are χ_1 and π itself [Dix: 4.1.10]. A fortiori χ_1 is weakly contained in $\pi \otimes \bar{\pi}$, hence π is amenable.

It was pointed out to us by M. Cowling that, already in 1951, Yoshizawa has constructed an infinite dimensional irreducible representation of \mathbb{F}_2 which is amenable. But Yoshizawa's representation has properties quite different from π , because the former weakly contains any irreducible representations of \mathbb{F}_2 [Yos: $\S3$.

Consider now the group $\Gamma = SL(2, \mathbb{Z})$, together with the subgroup Γ_0 generated by

$$
s_1 = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \quad \text{and} \quad s_2 = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}.
$$

It is a classical fact that Γ_0 is free on $\{s_1,s_2\}$, and that it is a normal subgroup of index 12 in Γ . Let σ be the representation induced by π from Γ_0 to Γ . The following result, which is certainly well-known, shows that σ decomposes into finitely many irreducible representations of F. We owe the proof to D. Poguntke.

LEMMA 5: Let Γ_0 be a normal subgroup of finite index of a group Γ , let π be an *infinite dimensional irreducible representation of* Γ_0 *and let* σ *be the representation induced by* π *from* Γ_0 to Γ . Then there exists a finite number of infinite *dimensional irreducible representations* $\sigma_1, \ldots, \sigma_n$ *of* Γ *such that* $\sigma = \bigoplus_{1 \leq j \leq n} \sigma_j$ *.*

Proof: Let $p: E \to \Gamma/\Gamma_0$ be the bundle associated with the principal bundle $\Gamma \to \Gamma/\Gamma_0$ and with π , and let K be the Hilbert space of sections of p, so that σ acts naturally on K. For each $x \in \Gamma/\Gamma_0$, let \mathcal{K}_x be the subspace of sections with support in $\{x\}$. As Γ_0 is normal in Γ , each \mathcal{K}_x is $\sigma(\Gamma_0)$ -invariant and $\mathcal{K} =$ $\bigoplus_{z\in\Gamma/\Gamma_0}\mathcal{K}_z$ is a decomposition of K into infinite dimensional irreducible $(\sigma|\Gamma_0)$ subspaces. It follows that the commutant $\sigma(\Gamma_0)'$ of $\sigma(\Gamma_0)$ in the algebra of all bounded operators on K is a subalgebra of the algebra of N -by- N matrices, where $N = [\Gamma: \Gamma_0]$; moreover any non-zero projection of $\sigma(\Gamma_0)'$ is infinite dimensional.

A fortiori, the commutant $\sigma(\Gamma)'$ of $\sigma(\Gamma)$ is a finite dimensional algebra. Let $\{p_1,\ldots,p_n\}$ be a set of pairwise commuting minimal projections in $\sigma(\Gamma)'$ such that $\sum_{1 \leq j \leq n} p_j = 1$. For each $j \in \{1, ..., n\}$, the image of p_j is an infinite dimensional subspace of K which is invariant under and irreducible with respect to $\sigma(\Gamma)$, and one may define σ_j as the corresponding subrepresentation of σ . **|**

Let us consider again $\Gamma = SL(2,\mathbb{Z}) \supset \Gamma_0 = \langle s_1, s_2 \rangle$, the representation π of Γ_0 on $L^2([0,1])$ constructed above and the corresponding $\sigma = Ind_{\Gamma_0}^{\Gamma}(\pi) =$ $\bigoplus_{1 \leq j \leq n} \sigma_j$. Since the trivial representation of Γ_0 is weakly contained in π , the trivial representation of Γ is weakly contained in σ , and thus also in σ_j for some $j \in \{1, \ldots, n\}$. A fortiori, the trivial representation of Γ is weakly contained in $\sigma_j \otimes \bar{\sigma_j}$, meaning that σ_j is amenable. We have proved:

PROPOSITION 2: *There exists an infinite dimensional irreducible representation* of SL(2, Z) which is *amenable.*

This answers a question of M. Bekka [Bek: Section 5] that was motivated by the fact that, because of property (T), no such representation exists for $SL(n, \mathbb{Z})$ when $n \geq 3$.

B. The peripheral spectrum

We consider again a finitely generated group Γ , a finite set S of generators of Γ and

$$
h=\frac{1}{|S|}\sum_{s\in S} s\in C^*(\Gamma).
$$

Let π be a unitary representation of Γ on a Hilbert space \mathcal{H} . In this section, we study the peripheral spectrum of $\pi(h)$ by means of the techniques of Section A.

Given any multiplicative character χ of Γ (i.e. a homomorphism χ from Γ to the circle group T), we define

$$
\kappa_{\chi}(\pi, S) = \inf_{\xi \in \mathbf{S}^1(\mathcal{H})} \max_{s \in S} \|\pi(s)\xi - \chi(s)\xi\|
$$

Clearly, if $\chi = \chi_1$, then $\kappa_\chi(\pi, S) = \kappa(\pi, S)$; also $\kappa_\chi(\pi, S) = \kappa(\bar{\chi}\pi, S)$ for any character χ , where $\bar{\chi}$ is the conjugate character and the product $\bar{\chi}\pi$ is the pointwise product. We say that χ is weakly contained in π if $\kappa_{\chi}(\pi, S) = 0$.

LEMMA 6: Let π be a representation of Γ on a Hilbert space \mathcal{H} , and let z be a *complex number.* One has $z \in Sp \pi(h) \cap T$ *if and only if there exists a character* χ of Γ such that $\chi(S) = \{z\}$, and χ is weakly contained in π .

Proof: The *"if"* part is clear. For the "only if" part, Lemmas 2 and 3 applied to $\bar{z}\pi(h)$ show that there exists a sequence $({\xi_i})$ of vectors in $S^1(\mathcal{H})$ such that

$$
\lim_{j \to \infty} \|\pi(s)\xi_j - z\xi_j\| = 0
$$

for all $s \in S$. Remark the following: given $\gamma, \gamma' \in \Gamma$ such that there exists $k, k' \in \mathbb{Z}$ with

$$
\lim_{j \to \infty} \|\pi(\gamma)\xi_j - z^k \xi_j\| = 0,
$$

$$
\lim_{j \to \infty} \|\pi(\gamma')\xi_j - z^{k'} \xi_j\| = 0,
$$

then

$$
\lim_{j\to\infty}\|\pi(\gamma\gamma')\xi_j-z^{k+k'}\xi_j\|=0.
$$

This remark shows that the constant function $\chi: S \to \mathbb{T}$ of constant value z extends unambiguously to a character χ of Γ . Finally, it follows from (*) that χ is weakly contained in π .

Lemma 6 has the following consequence for the spectra of h in the universal and regular representations.

LEMMA 7: For any z in the peripheral spectrum of h, one has $Sp h = z \cdot Sp h$ and $\text{Sp }\lambda(h) = z \cdot \text{Sp }\lambda(h)$.

Proof: Let χ be a character of Γ such that $\chi(S) = \{z\}$, as in Lemma 6. Then $\chi \pi_{un}$ is unitarily equivalent to π_{un} , so $(\chi \pi_{un})(h) = z \pi_{un}(h)$ has the same spectrum as $\pi_{un}(h)$. Observe now that the preceding argument is valid for any representation π of Γ such that $\chi\pi$ is unitarily equivalent to π for any character χ of Γ . In particular it holds for $\pi = \lambda$ (see [Dix: 13.11.3]).

Definition: Given an integer $n \geq 2$, we say that the set S of generators of Γ is n-coloring (bicoloring for *n=2)* if there exists z, a primitive n-th root of 1, and $\chi_{S,z}$, a character of Γ mapping S onto $\{z\}$.

Notice that if $\chi_{S,z}$ exists for one primitive *n*-th root z, then it exists for all. Below, we shall write $\kappa_z(\pi, S)$ for $\kappa_{\chi_s, z}(\pi, S)$.

PROPOSITION 3: Let $n \geq 2$ be an integer.

- (1) *The peripheral spectrum of h is a closed subgroup of T. It contains the set of n-th roots of 1 if and only if S in n-coloring. It coincides with* T *if and* only if there exists a homomorphism $\alpha: \Gamma \to \mathbb{Z}$ such that $\alpha(S) = \{1\}.$
- (2) *If S* is n-coloring, then the Cayley graph $\mathcal{G}(\Gamma, S \cup S^{-1})$ is n-colorable. The *converse is true if* $n = 2$, *namely:*

S is bicoloring $\Leftrightarrow -1 \in$ Sp $h \Leftrightarrow \mathcal{G}(\Gamma, S \cup S^{-1})$ is bicolorable.

- (3) The peripheral spectrum of $\lambda(h)$ is either empty or a closed subgroup of T . *Moreover, the following are equivalent:*
	- (a) F *is not amenable;*
	- (b) $1 \notin Sp(\lambda(h))$;
	- (c) Sp $\lambda(h) \cap \mathbb{T} = \emptyset$.

Proof'.

- *(1)* The first assertion follows from Lemma 7, the second from Lemma 6. The "if" part of the third assertion is easy; for the "only if" part, select some irrational real number θ , and set $z = e^{2\pi i \theta}$. By Lemma 6, there exists a character χ of Γ such that $\chi(S) = \{z\}$. Identifying the subgroup generated by z with \mathbb{Z} , we see that we can take χ for α .
- (2) Recall from [Gra:Chapter VII] that a graph G is n-colorable if there exists a partition $\mathcal{G}^{\circ} = \mathcal{G}^{\circ}_1 \amalg \cdots \amalg \mathcal{G}^{\circ}_n$ of its vertices, such that no edge of \mathcal{G} has both its extremities in the same class. From that definition, both assertions are straightforward.
- (3) The first assertion follows from Lemma 7. The second follows from the fact that a group Γ is amenable if and only if its regular representation λ weakly contains *some* finite-dimensional representation [Fel: Theorem 3].

Definition: Fix an integer $n \geq 2$, and z, a primitive n-th root of 1. Let S be a *n*-coloring finite set of generators of a group Γ , and let $\chi_{S,z}$ be the corresponding character. Given a representation π of Γ on a Hilbert space \mathcal{H} , we set

$$
\mathcal{H}_{S,z}^{\equiv} = \{ \xi \in \mathcal{H} : \pi(\gamma)\xi = \chi_{S,z}(\gamma)\xi \text{ for all } \gamma \in \Gamma \}
$$

and we denote by $\mathcal{H}^{\perp}_{S,r}$ the orthogonal complement of $\mathcal{H}^{\perp}_{S,r}$ in \mathcal{H} . The two corresponding subrepresentations of π are denoted by $\pi_{S,z}^-$ and $\pi_{S,z}^{\perp}$.

The following result, analogous to Proposition I, can easily be rephrased for any complex number z of modulus 1. For notational convenience, we chose to stick to roots of 1.

PROPOSITION 4: *Fix an integer* $n \geq 2$, and z a primitive *n*-th root of 1. Let π be a representation of Γ on a Hilbert space \mathcal{H} .

- (1) $z \in \text{Sp } \pi(h)$ if and only if S is n-coloring and $\chi_{S, z}$ is weakly contained in *lr.*
- (2) *z* is an eigenvalue of $\pi(h)$ if and only if S is n-coloring and $\chi_{S,z}$ is contained in π (that is $\mathcal{H}_{S,z}^{\pi} \neq \{0\}$).
- (3) If S is n-coloring, if $z \in \text{Sp } \pi(h)$ and if $z \notin \text{Sp } \pi_{S,z}^{\perp}(h)$, then z is an isolated point of $\text{Sp } \pi(h)$.
- (4) If $\kappa_z(\pi, S) > 0$ then Sp $\pi(h)$ is disjoint from the open ball $\{w \in \mathbb{C}: |w z| < \pi\}$ $\kappa_z(\pi, S)^2/(2|S|)$.

Assume moreover that $S = S^{-1}$.

- (5) If S is bicoloring and if -1 is isolated in Sp $\pi(h)$, then $-1 \notin Sp \pi_{S,-1}^{\perp}(h)$.
- (6) If Sp $\pi(h) \subset [-1 + \varepsilon, 1]$ for some $\varepsilon > 0$, then $\kappa_{-1}(\pi, S) \geq \sqrt{2\varepsilon}$.

Proof'. (1) is just a special case of Lemma 6. We leave the details of (2) to (5) to the reader (see Proposition I). For (6), observe that

$$
\operatorname{Re}\langle \xi | \pi(s)\xi \rangle) \geq -1 + \varepsilon
$$

implies

$$
\|\pi(s)\xi + \xi\|^2 = 2(1 + \text{Re}\langle\xi|\pi(s)\xi\rangle) \ge 2\varepsilon.
$$

A CONSEQUENCE OF PROPOSITIONS $I(1)$ and $4(1)$.

Recall that a group Γ is amenable if and only if its regular representation λ weakly contains some finite dimensional representation [Fel: Theorem 3]. Consequently, for Γ and S as usual, the following are equivalent.

- (i) Γ is not amenable.
- (ii) Sp $\lambda(h)$ is disjoint from $\{1\}$.
- (iii) Sp $\lambda(h)$ is disjoint from $\{1,-1\}$.

There is a straightforward analogue of Proposition 4 involving a complex number $z \in \mathbb{T}$ and a character $\chi_{S,z} \colon \Gamma \to \mathbb{T}$ such that $\chi_{S,z}(S) = \{z\}$. It follows that (i) , (ii) , (iii) above are equivalent to

(iv) Sp $\lambda(h)$ is disjoint from T .

C. Symmetric spectra

Let Q now be an **oriented finite graph.** One defines naturally an (in general not symmetric) adjacency matrix $A = (A_{v,w})_{w \in G^0}$ for G . Suppose that G is connnected by oriented paths, namely that the matrix A is irreducible in the sense of Perron-Frobenius theory. It is known that the spectral radius ρ of A is a simple eigenvalue of A, and moreover that the following are equivalent:

(i) $\mathcal G$ is bicolorable,

$$
(ii) -\rho \in \mathrm{Sp}\,A,
$$

$$
(iii) \ \mu \in \mathrm{Sp} \, A \Leftrightarrow -\mu \in \mathrm{Sp} \, A \ .
$$

(See e.g. Chapter XIII of [Gan].)

The purpose of this section is to start to investigate how this could carry over to the situation of the previous sections.

Given a self-adjoint operator x on a Hilbert space H , we set

$$
\min \text{ Sp } x = \min\{\alpha \colon \alpha \in \text{Sp } x\} = \min\{\langle \xi | x \xi \rangle \colon \xi \in \mathbb{S}^1(\mathcal{H})\},
$$

$$
\max \text{ Sp } x = \max\{\alpha \colon \alpha \in \text{Sp } x\} = \max\{\langle \xi | x \xi \rangle \colon \xi \in \mathbb{S}^1(\mathcal{H})\}.
$$

Let again Γ , S and h be as in Section A.

PROPOSITION 5: We assume that Γ is not reduced to one element.

- (1) If the set *S* is bicoloring, then the spectrum of $\lambda(h)$ is symmetric with respect *to O.*
- (2) *The following are equivalent:*
	- (i) S in bicoloring.
	- (ii) *The spectrum of h* is symmetric *with respect to O.*
	- (iii) $-1 \in$ Sp h .

Suppose moreover that $S^{-1} = S$.

(3) *One has*

$$
\max \mathrm{Sp}\,\,h\geq \max \mathrm{Sp}\,\,\lambda(h)\geq \frac{1}{|S|}>0
$$

and

$$
\min \mathrm{Sp}\;h\leq \min \mathrm{Sp}\;\lambda(h)\leq 0.
$$

(4) If $1 \notin S$, then one has moreover

$$
\min \mathrm{Sp}\;h\leq \min \mathrm{Sp}\;\lambda(h)\leq -\frac{1}{|S|}<0.
$$

(5) *(Due to Kesten.) One has*

$$
|\min \mathrm{Sp} \ \lambda(h)| \leq \max \mathrm{Sp} \ \lambda(h).
$$

(6) *(Due to Kesten.)* If $S^{-1} = S$ one has

$$
\max \mathrm{Sp}\,\,\lambda(h) \geq 2\frac{\sqrt{|S|-1}}{|S|}.
$$

If $|S| > 2$ then one has equality if and only if Γ is free on a set S_+ of *generators such that* $S = S_+ \cup (S_+)^{-1}$.

Proof:

- (1) This is a consequence of Lemma 7.
- (2) This follows from Lemma 7 and Proposition 3 (2).

As usual, we denote by $(\delta_{\gamma})_{\gamma \in \Gamma}$ the canonical basis of $l^2(\Gamma)$. Suppose first that Γ is finite and $\Gamma = S$. Then $\lambda(h)$ is the projection from $l^2(\Gamma)$ onto the line $\mathbb{C}\sum_{\gamma\in\Gamma}\delta_{\gamma}$, so that Sp $\lambda(h) = \{0,1\}.$

To prove (3) and (4), we may assume from now on that $\Gamma \neq S$. As S generates Γ , and as $S^{-1} = S$, it follows that S is not a subgroup of Γ , so that there exist two (not necessarily distinct) elements $s, t \in S$ such that $st \notin S$. We define the vectors

$$
\eta_+ = \frac{1}{\sqrt{2}} (\delta_t + \delta_{st})
$$

and

$$
\eta_{-}=\frac{1}{\sqrt{2}}(\delta_t-\delta_{st})
$$

in $\mathbb{S}^1(l^2(\Gamma))$. We have

$$
\langle \lambda(h)\eta_+|\eta_+\rangle=\frac{1}{2}\{\langle \lambda(h)\delta_t|\delta_t\rangle+\langle \lambda(h)\delta_t|\delta_{st}\rangle+\langle \lambda(h)\delta_{st}|\delta_t\rangle+\langle \lambda(h)\delta_{st}|\delta_{st}\rangle\}.
$$

The right hand side is equal to

$$
\frac{1}{2}\left\{0+\frac{1}{|S|}+\frac{1}{|S|}+0\right\}=1/|S|,
$$

if $1 \notin S$ and to $2/|S|$ if $1 \in S$. Thus

$$
\max \mathrm{Sp}\,\,\lambda(h)\geq 1/|S|
$$

in all cases.

Similarly $\langle \lambda(h)\eta_-|\eta_-\rangle$ is equal to $-1/|S|$ if $1 \notin S$ and to 0 if $1 \in S$, so that min Sp $\lambda(h)$ is bounded above by $-1/|S|$ if $1 \notin S$ and by 0 in all cases. This completes the proof of Claims (3) and (4).

Let us now show (5), which is due to Kesten [Kel, Formula 2.11]. Let ${E_t}_{t\in\mathbb{R}}$ be the spectral resolution of $\lambda(h)$ (see e.g. [RSN: no. 107]), and let σ be the probability Borel measure defined on R by

$$
\sigma(B) = \int_B d\langle E_t \delta_1 | \delta_1 \rangle
$$

for all Borel subsets $B \subset \mathbb{R}$, where $\delta_1 \in l^2(\Gamma)$ denotes the Dirac function of support $\{1\} \subset \Gamma$.

Let us first observe that the spectrum Sp $\lambda(h)$ coincides with the support Supp σ . Indeed, let $\alpha \in \mathbb{R}$. Then

 $\alpha \in \text{Sp } \lambda(h) \Leftrightarrow$ for all $\epsilon > 0$ one has $E(|\alpha - \epsilon, \alpha + \epsilon|) \neq 0$, by definition of

the projection-valued measure E associated to ${E_t}_{t \in \mathbb{R}}$

 \Leftrightarrow for all $\epsilon > 0$ there exists $\gamma \in \Gamma$ such that

 $\langle E(|\alpha - \varepsilon, \alpha + \varepsilon|) \delta_{\gamma} | \delta_{\gamma} \rangle \neq 0$, because a non-zero projection has some non-zero diagonal matrix element

- \Leftrightarrow for all $\varepsilon > 0$ one has $\langle E(|\alpha \varepsilon, \alpha + \varepsilon|) \delta_1 | \delta_1 \rangle \neq 0$, because $\lambda(h)$ and $E(|\alpha - \varepsilon, \alpha + \varepsilon|)$ commute with the right regular representation of F
- $\Leftrightarrow \alpha \in \text{Supp }\sigma, \text{ by definition of }\sigma.$

Let us also observe that all moments of σ are non-negative. Indeed, for each $n \geq 0$ the n-th moment of σ is

$$
\mu_n = \int_{\mathbb{R}} t^n d\sigma(t) = \langle \lambda(h)^n \delta_1 | \delta_1 \rangle.
$$

As $|S|\lambda(h)$ is the adjacency matrix of the Cayley graph $\mathcal{G}(\Gamma, S)$, the number $\langle |S|^n \lambda(h)^n \delta_1 | \delta_1 \rangle$ is also the number of closed paths of length n in $\mathcal{G}(\Gamma, S)$ starting at 1, so that $\mu_n \geq 0$. (Otherwise said: μ_n is the probability that the appropriate random walk starting at 1 goes back to 1 after *n* steps, so that $\mu_n \geq 0$.)

Claim (5) is now a consequence of the following standard lemma, from measure theory. For claim (6) we refer to [Kel].

LEMMA 8: Let σ be a probability Borel measure with compact support on the *real line. Set*

$$
-m = \min\{t \in \mathbb{R}: t \in \text{Supp }\sigma\},\
$$

$$
M = \max\{t \in \mathbb{R}: t \in \text{Supp }\sigma\}.
$$

Assume that one has

$$
-m < 0 < M,
$$
\n
$$
\mu_n = \int_{\mathbb{R}} t^n d\sigma(t) \ge 0 \quad \text{for all } n \in \mathbb{N}.
$$

Then one has

$$
\limsup_{n\to\infty}(\mu_n)^{1/n}=M=\max(m,M).
$$

Proof: Set $F(t) = \int_{-\infty}^{t} d\sigma(t)$ for all $t \in \mathbb{R}$. We claim first that

$$
\limsup_{n\to\infty}(\mu_n)^{1/n}\geq \max(m,M).
$$

For each integer $n \geq 0$, one has

$$
\mu_n \leq \int_{\mathbb{R}} |t|^n d\sigma(t) \leq \max(m^n, M^n)[F(M+1) - F(m-1)].
$$

As the square bracket is strictly positive by definition of m and M, this implies the claim.

Let us now consider the moments of even order. For each $n \geq 0$ and for each small enough real number $\varepsilon > 0$, one has

$$
\mu_n \ge \max \left\{ \int_{-m-\epsilon}^{-m+\epsilon} t^{2n} d\sigma(t), \int_{M-\epsilon}^{M+\epsilon} t^{2n} d\sigma(t) \right\}
$$

$$
\ge \max \left\{ (m-\epsilon)^{2n} [F(-m+\epsilon) - F(-m-\epsilon)], \right\}
$$

$$
(M-\epsilon)^{2n} [F(M+\epsilon) - F(M-\epsilon)] \right\}.
$$

As the square brackets are strictly positive, this implies

$$
\limsup_{n\to\infty}(\mu_{2n})^{1/2n}\geq \max\{m-\varepsilon,M-\varepsilon\}.
$$

As this holds for all small enough ε , the left-hand side is also larger than $\max\{m, M\}$, so that one has

$$
\limsup_{n\to\infty}(\mu_n)^{1/n}=\max(m,M).
$$

Let us finally consider the moments of odd order. For each $n \geq 0$ and $\varepsilon > 0$ as above, one has

$$
\mu_{2n+1} = \int_{-m-\epsilon}^{0} t^{2n+1} d\sigma(t) + \int_{0}^{M+\epsilon} t^{2n+1} d\sigma(t) \ge 0
$$

so that

$$
(M+\varepsilon)^{2n+1}[F(M+\varepsilon)-F(0)] \ge \int_0^{M+\varepsilon} t^{2n+1} d\sigma(t)
$$

\n
$$
\ge \int_{-m-\varepsilon}^{-m+\varepsilon} |t|^{2n+1} d\sigma(t) \ge (m-\varepsilon)^{2n+1}[F(-m+\varepsilon)-F(-m-\varepsilon)].
$$

This implies again $M + \varepsilon \ge m - \varepsilon$, so that one has finally $M \ge m$.

Remarks: (1) Suppose that S is symmetric. If S is bicoloring, then

$$
-\min \mathrm{Sp}\,\,\lambda(h)=\max \mathrm{Sp}\,\,\lambda(h)
$$

by Proposition 5 (1). Conversely, answering a question in a preliminary version of our paper, D.I. Cartwright has shown [Car] that the equality above implies that S is bicoloring.

D. A characterization of discrete Kazhdan groups

We now prove Proposition III from the introduction.

- (1) The first assertion follows from Proposition I (4) for $z = 1$, and from Proposition 4 (4) for each other z on the peripheral spectrum of h ; indeed, the sum of all (equivalence classes of) irreducible representations of Γ defines a faithful *-representation of $C^*(\Gamma)$ [Ped: 4.3.7]. To check the second assertion we notice that, by the first assertion, the distance between two distinct elements in the peripheral spectrum of h is at least ε . Since the angle subtended by an interval of length ε inscribed in T is 2Arcsin $\frac{\varepsilon}{2}$, we see that the peripheral spectrum has at most $\pi/\mathrm{Arcsin}\frac{\epsilon}{2}$ points.
- (2) If Sp $h \subset [-1, 1-\varepsilon] \cup \{1\}$, the conclusion follows from Proposition I (6); if $-1 \in$ Sp $h \subset \{-1\} \cup [-1 + \varepsilon, 1]$, then S is bicoloring by Proposition 3 (2), and the conclusion follows from Proposition 4 (6), and the fact that $\kappa_{-1}(\pi, S) = \kappa(\chi_{S,-1}\pi, S).$

QUESTIONS:

- (1) Are *Kazhdan groups characterized by the fact that 1 is an isolated point* ofSp *h in the case when S is not symmetric?*
- (2) *Assume that F has property (T). Consider a symmetric set of generators* $S^{-1} = S$. Let

$$
\varepsilon_{-} = 1 + \min\{\alpha \in \text{Sp } h \colon \alpha > -1\},\
$$

$$
\varepsilon_{+} = 1 - \max\{\alpha \in \text{Sp } h \colon \alpha < 1\},\
$$

so that

$$
\{-1+\varepsilon_-, 1-\varepsilon_+\}\subset \mathrm{Sp}\;h\subset \{-1\}\cup [-1+\varepsilon_-, 1-\varepsilon_+]\cup \{1\}.
$$

If S is bicoloring, then Proposition 5 (2) shows that $\varepsilon_{-} = \varepsilon_{+}$ *. How do* ε_{-} and ε_+ compare in general?

Remarks:

- (1) It has been shown in [Val] that a locally compact group G is a Kazhdan group if and only if there is a (necessarily unique) projection p_G in $C^*(G)$ which is annihilated by every irreducible representation of G distinct from χ_1 . If Γ is a countable Kazhdan group, S is a symmetric finite generating subset of Γ , and h is as usual, then 1 is isolated in Sp h by Proposition III (1). It also follows from Proposition I (6) that the spectral projection of h corresponding to 1 is the projection p_{Γ} mentioned above.
- (2) If S is symmetric then everything in Proposition III (2) can be reformulated in terms of the Laplacian $\Delta = |S|(1-h)$. For example, if Γ is a Kazhdan group then Sp $\Delta \subset \{0\} \cup [\frac{1}{2}\hat{\kappa}(\Gamma, S)^2, 2|S|]$. Conversely if Sp $\Delta \subset \{0\}$ U $[|S|\varepsilon, 2|S|]$ for some $\varepsilon > 0$, then Γ is a Kazhdan group and $\kappa(\Gamma, S) \geq \sqrt{2\varepsilon}$. **|**

Denote by $\mu_1(\mathcal{G})$ the smallest positive eigenvalue of the Laplacian of a finite $graph G.$

COROLLARY TO PROPOSITION III: Let F be a *discrete Kazhdan group with a finite set* $S = S^{-1}$ of generators. Let $\hat{\kappa} = \hat{\kappa}(\Gamma, S)$. Let φ be a homomorphism of *F* onto a finite group Γ_0 whose restriction to $S \cup \{1\}$ is injective. Consider the *Cayley graph* $G = \mathcal{G}(\Gamma_0, \varphi(S))$. *Then* $\mu_1(G) \geq \hat{\kappa}^2/2$.

Proof. If λ_0 is the regular representation of Γ_0 on $l^2(\Gamma_0)$, then $\lambda_0 \circ \varphi(\Delta)$ is the combinatorial Laplacian of G . The conclusion follows from the above Remark, since

$$
\operatorname{Sp} \lambda_0 \circ \varphi(\Delta) \subset \operatorname{Sp} \Delta.
$$

Remarks:

- (1) $\mu_1(\mathcal{G})$ provides qualitative information about the graph. For example, graphs with large μ_1 tend to have large connectivity and small diameter. See [Bie] for a survey of results in this area. The above Corollary is a slight improvement on Lemma 2.3 of [AlM], since the inequality $\hat{\kappa}(\Gamma, S) \geq \kappa(\Gamma, S)$ may be strict, even for finite groups. Also $\hat{\kappa}(\Gamma, S)$ is easier to calculate.
- (2) M. Burger has obtained inequalities related to some Kazhdan constants for $SL(3, \mathbb{Z})$ [Bur]. These can be combined with the Corollary to give a lower bound for μ_1 when

$$
\Gamma = \Gamma_0 = SL(3, \mathbb{Z}/N\mathbb{Z}) \quad (N \ge 2)
$$

and S is the set of all matrices of the form

 $0 \quad 1 \quad 0 \mid , \mid 2 \quad 1 \quad j \mid , \quad j = -1,0$ 0 0 0

and their inverses. The result is that for the corresponding Cayley graph G,

$$
\mu_1(\mathcal{G}) \ge (1 - n^{-1/2})^2 / 32
$$

where n is the product of the distinct prime factors of N .

E. Finite dimensional irreducible representations of a Kazhdan group

The aim of this section is to prove Proposition IV from the introduction.

We first need the following simple result.

LEMMA 9: Let Γ be a finitely generated group with finite generating set S. If π_1 and π_2 are irreducible representations of Γ and 1 is an eigenvalue of the operator $(\pi_1 \otimes \bar{\pi}_2)(h)$, then π_1 and π_2 are equivalent finite dimensional representations.

Proof. Let $\mathcal{H}_1, \mathcal{H}_2$ be the representation spaces of π_1, π_2 respectively. Using the usual identification of $\mathcal{H}_1 \otimes \mathcal{H}_2$ with the space of Hilbert-Schmidt operators from \mathcal{H}_2 into \mathcal{H}_1 , we write $\pi_1 \otimes \bar{\pi}_2$ in the form

$$
(\pi_1 \otimes \bar{\pi}_2)(\gamma)\xi = \pi_1(\gamma)\xi\pi_2(\gamma)^{-1}
$$

where $\xi: \mathcal{H}_2 \to \mathcal{H}_1$ is Hilbert-Schmidt.

Choose ξ with Hilbert-Schmidt norm $\|\xi\|_2 = 1$ such that $(\pi_1 \otimes \bar{\pi}_2)(h)\xi = \xi$. That is

$$
\frac{1}{|S|}\sum_{s\in S}(\pi_1\otimes\bar{\pi}_2)(s)\xi=\xi.
$$

By Lemma 3, we have $(\pi_1 \otimes \bar{\pi}_2)(s) \xi = \xi$ for all $s \in S$. It follows that $\pi_1(\gamma) \xi =$ $\xi \pi_2(\gamma)$, for all $\gamma \in \Gamma$. Since π_1, π_2 are irreducible, $\pi_1 \simeq \pi_2$ and ξ is an isomorphism. Since ξ is a compact operator, π_1, π_2 are necessarily finite dimensional. **|**

Remark: A similar argument shows that a (possibly reducible) unitary representation π of Γ has a finite dimensional subrepresentation if and only if 1 is an eigenvalue of $(\pi \otimes \overline{\pi})(h)$.

Now let $\mathcal{H} = \mathbb{C}^m$ be a fixed finite dimensional Hilbert space. Denote by $||x||_2 = \text{tr}(x^*x)^{1/2}$ the Hilbert-Schmidt norm of an operator x on H. The next result is corollary 2 of [Was].

LEMMA 10: *Let* r be a *discrete Kazhdan group, let S be a finite set of generators of F and set*

$$
\varepsilon = \frac{1}{2|S|} \hat{\kappa}(\Gamma, S)^2.
$$

If π_1, π_2 are *irreducible representations of* Γ on $\mathcal{H} = \mathbb{C}^m$ such that $\|\pi_1(s) - \pi_2(s)\|_2 < \varepsilon \sqrt{m}$, for all $s \in S$, then π_1 is equivalent to π_2 .

Proof: We may assume that $S = S^{-1}$, since

$$
\|\pi_1(s^{-1})-\pi_2(s^{-1})\|_2=\|\pi_1(s)-\pi_2(s)\|_2.
$$

If $I: \mathcal{H} \to \mathcal{H}$ is the identity map, then

$$
||I - (\pi_1 \otimes \bar{\pi}_2)(h)(I)||_2 = \left\| I - \frac{1}{|S|} \sum_{s \in S} \pi_1(s) \pi_2(s)^{-1} \right\|_2
$$

$$
\leq \frac{1}{|S|} \sum_{s \in S} ||I - \pi_1(s) \pi_2(s)^{-1}||_2
$$

$$
= \frac{1}{|S|} \sum_{s \in S} ||\pi_2(s) - \pi_1(s)||_2
$$

$$
< \varepsilon \sqrt{m}.
$$

Let $\eta = m^{-1/2}I$, so that $\|\eta\|_2 = 1$. Then

$$
1 - \langle \eta | (\pi_1 \otimes \bar{\pi}_2)(h) \eta \rangle = \langle \eta | \eta - (\pi_1 \otimes \bar{\pi}_2)(h) \eta \rangle < \epsilon.
$$

Therefore $Sp(\pi_1 \otimes \bar{\pi}_2)(h)$ meets $(1 - \varepsilon, 1]$. It follows from Proposition III (1) that 1 is an eigenvalue of $(\pi_1 \otimes \bar{\pi}_2)(h)$ and so $\pi_1 \simeq \pi_2$, by the preceding Lemma. **|**

Proof of Proposition IV from *the Introduction:* We continue with the notation of Lemma 10.

Let $n = |S|$ and $S = \{s_1, \ldots, s_n\}$. Define a norm on $B(\mathcal{H})^n$ by

$$
||(x_1,\ldots,x_n)||=\max_{1\leq j\leq n}||x_j||_2.
$$

Lemma 10 says that $\pi_1 \simeq \pi_2$ whenever π_1, π_2 are irreducible representations of Γ on $\mathcal{H} = \mathbb{C}^m$ satisfying

$$
\|(\pi_1(s_1),\ldots,\pi_1(s_n)) - (\pi_2(s_1),\ldots,\pi_2(s_n))\| < \varepsilon\sqrt{m}.
$$

Let k be the number of balls of Hilbert-Schmidt radius $\varepsilon\sqrt{m}/2$ which are required to cover the unitary group $U(m)$. Then $U(m)^n$ is covered by k^n balls of radius $\varepsilon\sqrt{m}/2$, so there are at most k^n inequivalent irreducible representations of Γ on \mathbb{C}^m . It remains to estimate k.

Now $U(m) \subset \{x \in B(\mathbb{C}^m): ||x||_2 = \sqrt{m}\}\)$. Using matrix entries as coordinates, and identifying $\mathbb C$ with $\mathbb R^2$, we have, for the usual Euclidean norm,

$$
U(m)\subset \{x\in \mathbb{R}^{2m^2}\colon \|x\|=\sqrt{m}\}.
$$

It is therefore enough to find the number of balls of radius $\epsilon \sqrt{m}/2$ which are required to cover a sphere of radius \sqrt{m} in \mathbb{R}^{2m^2} . This is the same as covering a sphere of radius 1 with balls of radius $\varepsilon/2$. A sharp asymptotic bound for this is given by the Corollary in [Wyn]. There it is shown that $k = e^{\alpha m^2}$ balls are enough to do the job, where $\alpha > 0$ is constant. In fact, for sufficiently large m, we need only choose $\alpha > -2$ log sin θ , where θ is the half-angle subtended at 0 by a ball of radius $\varepsilon/2$ with centre on the sphere of radius one. Letting $A = A(\Gamma, S)$ denote the constant *an* of the preceding argument, we obtain

$$
\operatorname{Irrep}_{\Gamma}(m)=0(e^{Am^2}).
$$

Remark: There exists a discrete Kazhdan group with no nontrivial finite dimensional representations. This follows from [Gro: Chapter 5]. The result is that any lattice in $Sp(1, q)$, $q \geq 2$, has uncountably many infinite quotients which are simple and torsion. Such a quotient provides the desired example. For if there is a non-trivial finite dimensional representation then it is faithful (by simplicity), so the group is linear. However a linear non-amenable group has to contain a copy of the free group on two generators by Tits' theorem [Tit]. This contradicts the fact that the group is a torsion group.

Let Γ be the group $SL(n, \mathbb{Z})$, with $n \geq 3$. Steinberg [Ste] has shown that any finite dimensional unitary representation of Γ factorizes through $SL(n, \mathbb{Z}/k\mathbb{Z})$ for some integer k. Using this and information on the characters of $SL(n, \mathbb{Z}/p\mathbb{Z})$ for prime $p's$, it should be possible to improve the bound of Proposition IV for $SL(n, Z)$, and also to obtain lower asymptotic bounds for Irrep_r (m) .

In the line of our work, there are numerous questions which remain open. Let us mention here the following ones:

When is $Sp(\lambda(h))$ connected?

When does $\lambda(h)$ have eigenvalues besides 1 and -1?

When is the spectral measure of $\lambda(h)$ absolutely continuous with respect to the Lebesgue measure on [-1,1] ?

Finally we remark that Proposition I of the present paper has been used in [HRV] to obtain results on exactness for group C^* -algebras.

Note added in proof: In a remarkable piece of work, D. I. Cartwright, W. Mlotkowski and T. Steger, Property (T) and A_2 groups, preprint, University of Sydney, 1992, the authors show by combinatorial methods that certain groups associated with buildings have property (T). Moreover they calculate the spectrum of h and obtain the exact values of the Kazhdan constants, using the estimates of Proposition I (6).

References

- $[AM]$ N. Alon and V.D. Milman, λ_1 , *Isoperimetric inequalities for graphs and super*concentrators, J. Combinatorial Theory Set. B38 (1985), 73-88.
- **[Bali** R. Bacher and P. de la Harpe, *Exact values of Kazhdan* constants *for some finite* groups, preprint, Geneva, 1991.
- [BeH] E. Bedos and P. de la Harpe, *Moyennabilité intérieure des groupes: définitions* et examples, L'Enselgnement Math. 32 (1986), 139-157.
- [Bek] M. E. B. Bekka, *Amenable unitary representations of locally compact groups,* Invent. Math. 100 (1990), 383-401.
- [Bie] F. Bien, *Constructions of telephone networks by group representations,* Notices Amer. Math. Soc. 36-1 (1989), 5-22.
- [BMS] N. L. Biggs, B. Mohar and J. Shawe-Taylor, *The spectral radius of infinite graphs,* Bull. London Math. Soc. 20 (1988), 116-120.
- [Bur] M. Burger, *Kazhdan constants for* SL(3, Z), J. Reine Angew. Math. 43 (1991), 36-67.
- [Car] D.I. Cartwright, *Singularities of the* Green *function of a random walk on a discrete* group, Mh. Math. 118 (1992), 183-188.
- [CS1] D. I Cartwright and P. M. Soardi, *Harmonic analysis on the free product of two cyclic groups,* J. Funct. Anal. 65 (1986), 147-171.
- [CS2] D.I. Cartwright and P. M. Soardi, *Random walks on free products, quotients* and *amalgams,* Nagoya Math. J. 102 (1986), 163-180.
- [CdV] Y. Colin de Verdière, *Distribution de Points sur une Sphère (d'après Lubotzky*, *Phillips et Sarnak),* Sem. Bourbaki 703, 1988.
- [DeK] C. Delaroche and A. Kirillov, *Sur* les *relations entre l'espace dual d'un groupe* et la structure de ses sous-groupes fermés, Sem. Bourbaki 343 1967-1968.
- [Dix] J. Dixmier, *C*-algebras,* North-Holland, Amsterdam-New York-Oxford, 1977.
- [Fell J.M.G. Fell, *Weak containment and Kronecker products of group representations,* Pacific J. Math. 13 (1963), 503-510.
- [Gan] F. Gantmacher, *The Theory of Matrices,* Vol. 2, Chelsea Publ., New York, 1960.
- [Ger] P. Gerl, *Amenable groups and amenable graphs,* Lecture Notes in Math. 1359, Springer, Berlin, 1988, pp. 181-190.
- [GoM] C. D. Godsil and B. Mohar, *Walk generating functions and spectral measures of infinite graphs,* Linear Algebra and its Appl. 107 (1988), 191-206.
- [Gra] J.E. Graver and M. E. Watkins, *Comblnatorics with Emphasis on the Theory of Graphs,* Springer-Verlag, New York, 1977.
- [Gro] M. Gromov, *Hyperbolic groups,* in *Essays in Group Theory* (S. M. Gersten, ed.), Springer, Berlin, 1987, pp. 75-263.
- [Hall P.R. Halrnos, *A Hilbert Space Problem Book* (2nd ed.), Springer-Verlag, New York, 1982.
- [HaV] P. de la Harpe and g. Valette, La *propridtd (T) de Kazhdan pour les groupes localement compacts, Astérisque 175, Soc. Math. France, 1989.*
- [HRV] P. de la Harpe, A. G. Robertson and A. Valette, On *exactness of group C*-algebras,* preprint, 1991.
- **[Hul]** A. Hulanicki, *Groups whose regular representation weakly contains all unitary representations, Studia Math.* 24 (1964), 37-59 . See also: *Means and Følner conditions on locally compact groups,* Studia Math. 27 (1966), 87-104.
- **[IoP]** A. Iozzi and M. A. Picardello, *Spherical functions on symmetric graphs,* in *Conference in Harmonic Analysis,* Lecture Notes in Math. 992, Springer, Berlin, 1983, pp. 87-104.
- [Kaz] D. Kazhdan, *Connection of the dual space of a group with the structure of its dosed subgroups,* Funct. Anal. Appl. 1 (1967), *63-65.*
- [Kei] H. Kesten, *Symmetric random walks on groups,* Trans. Amer. Math. Soc. 92 (1959), 336-354.
- [Ke2] H. Kesten, *Full Banach mean values on countable groups,* Math. Scand. **7** (1959), 146-156.
- [KuS] G. Kuhn and P. M. Soardi, *The Plancherel* measure *for polygonal* graphs, Ann. Mat. Pura. Appl. 184 (1983), 393-401.
- [Lub] A. Lubotzky, *Discrete groups, expanding graphs and invariant measures,* CBMS Proceedings (1989) Amer. Math. Soc. (to appear).
- **[Mlo]** W. Mlotkowski, *Positive definite functions on free products of groups,* Boll. Un. Mat. Ital. 3-B (1989), 343-355.
- **[MOW]** B. Mohar and W. Woess, *A survey on spectra of infinite graphs,* Bull. London Math. Soc. 21 (1989), 209-234.
- [Pat] A. L. T. Paterson, *Amenability,* Math. Surveys and Monographs 29, Amer. Math. Soc., 1988.
- $[Ped]$ G. K. Pederson, *C*-algebras and their Automorphism Groups,* Academic Press, London-New York-San Francisco, 1979.
- [RSN] F. Riesz and B. Sz-Nagy, *Leçons d'analyse fonctionelle, Akadémiai Kiadó, Bu*dapest, 1952.
- [SOW] P. M. Soardi and W. Woess, *Amenability, unimodularity, and the spectral radius of random walks on infinite graphs,* preprint, Milano, 1988.
- **[Ste]** R. Steinberg, *Some consequences of the elementary relations in* SL,, Contemporary Math. 45 (1985), 335-350.
- $[Tit]$ J. Tits, Free *subgroups in* linear *groups,* J. Algebra 20 (1972), 250-270.
- **[Vail** A. Valette, *Minimal projections, integrable representations* and *property (T),* Arch. Math. 43 (1984), 397-406.
- [Wan] S. P. Wang, *On isolated points in the dual space of locally compact groups,* Math. Ann. 218 (1975), 19-34.
- [Was] S. Wassermann, C*-algebras *associated with* groups *with Kazhdan's property* I', Ann. Math. 134 (1991), 423-431.
- [Wyn] A. D. Wyner, *Random packings* and coverings of *the unit* n-sphere, Bell System Tech. J. 46 (1967), 2111-2118.
- [Yos] H. Yoshizawa, Some remarks on *unitary representations* of *the* free group, Osaka Math. J. 3 (1951), 55-63.