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ABSTRACT 

Let r be a finitely generated group. In the group algebra C[F], form the 

average h of a finite set S of generators of I ~. Given a unitary representation 

Ir of r ,  we relate spectral properties of the operator It(h) to properties of 

r and 7r. 

For the universal representation 7r~n of r ,  we prove in particular 

the following results. First, the spectrum Sp(~ru~ (h)) contains the complex 

number  z of modulus one iff Sp(~r~n (h)) is invariant under multiplication 

by z, iff there exists a character X: r --~ T such that  x(S) = {z}. Second, 

for S -1 = S, the group F has Kazhdan's  property (T) if and only if 1 

is isolated in Sp(~r~n(h)); in this case, the distance between 1 and other 

points of the spectrum gives a lower bound on the Kazhdan constants.  

Numerous examples illustrate the results. 
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Introduction 
Let F be a finitely generated group, and let S be a finite generating set. As- 

sume for the moment that 1 ~ S and that S is symmetric (S -1 = S). On the 

Cayley graph ~(F, S), consider the nearest neighbour isotropic random walk: the 

transition probability M%-t, between two vertices 7, 7' of the graph is ]S1-1 if 

they are nearest neighbours (namely here if 77 '-1 E S) and zero otherwise. The 

matrix M = (M~,.r,)~-r,~r acts naturally as a bounded linear operator on the 

Hilbert space 12 (F). In two pioneering papers [Kel], [Ke2], Kesten started to in- 

vestigate the relations between properties of the group F and spectral properties 

of transition operators such as M. He showed for example that 

2 - 1 < IIMll < 1 
ISI 

with equality on the right if and only if F is amenable (a condition independent 

of the choice of S), and with equality on the left if and only if F is a free group 

on a set S+ such that S = S+ U (S+)-1. 

Our purpose here is to modify Kesten's starting point in two ways: 

(1) We consider a finite generating set S which need not be symmetric. 

(2) We consider an arbitrary unitary representation lr of F on a Hilbert space 

~ rather than only the left regular representation ,X of 1" on 12(F). 

Denote by C[F] the complex group algebra. To any representation Ir of F as 

above is associated a .-representation of C[F] on the same Hilbert space ~ , ,  also 

denoted by ~r, and defined by ~r(f) = ~-'~-t~r f(7)Tr(7) for all f E cir l .  

Given S as in (1), we set 

In case S is symmetric and 1 r S, observe that ~(h) is precisely the operator M 

appearing in Kesten's papers. In the setting of (1) and (2) above, our programme 

is to investigate the relations between properties of F and 7r on one hand, and 

spectral properties of 7r(h) on the other hand. 

There are several interesting examples of such ~r, besides the left regular repre- 

sentation ,X. One is the universal  representa t ion  ~r,,, which is the direct sum 

of all cyclic representations of I" (up to unitary equivalence). Other are charac- 

ters F ~ {z E C: ]z I = 1}, including the trivial represen ta t ion  X1 defined by 

X1(7) = 1 for all 7 E F. 
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To state our first result, we need the following terminology. Given a represen- 

tation ~r of F on a Hilbert space 7"/and a finite generating set S as above, we 

define the Kazhdan constant 

,c(r, S) = inf max [[~r(s)~ - ~[1 
~Est (7~) ,Es 

where we denote by $1(7~) the uni t  s p h e r e  {~ 6 ~:  I1~11 = 1}. This constant 

depends on S, but the fact that it is zero or not does not; indeed s(Tr, S) = 0 if 

and only if X* is weakly contained in r:. The latter means that ~(~r, F )  = 0 for 

" the restriction of ~r to the orthogonal any finite subset F of F. We denote by ~r 1 

complement in ~ of the space of vectors fixed by F. In Section A, we shall prove. 

PROPOSITION I: Let Ir be a representation o f f  on a Hilbert space "H. 

(1) 1 6 Sp 7r(h) f f and  only f iX ,  is weakly contained in ~r. 

(2) 1 is an eigenvalue of Sp ~r(h) i f  and only i f  X, is contained in r. 

(3) If 1 �9 Sp =(h) and 1 r Sp =f(h), then 1 is an isolated point of both 

Sp ~(h) and Sp ~(�89 + h*)). 
(4) If,c(a', S) > 0, then Sp It(h) is disjoint from the open disc 

{z �9 c: Iz - xl < ~(~, s)2/(21Sl)}. 

Assume moreover that S -1 = S. 

(S) If l  is isolated in Sp ~r(h), then 1 r Sp Ir ~(h) .  

(6) I fSp lr(h) C [-1,1 - e l  for some~ > 0 then re(It, S) > V t ~ .  

We show by an example the assumption S -1 = S cannot be removed from (5). 

Actually we construct an infinite dimensional irreducible representation Ir of the 

free group F2 on a two generator set S = {a, b} such that Sp 7r(h) = {1}. Viewing 

F2 as a normal subgroup of index 12 in SL(2, g), inducing and decomposing, we 

obtain an infinite dimensional irreducible representation of SL(2, Z) which weakly 

contains X1. This answers, almost fortuitously, a question of Bekka in [Bek]; see 

the end of Section A. 

In Sections B and C, we deal with the pe r iphe ra l  s p e c t r u m  of 7r(h), that 

is with the intersection of Sp ~r(h) with the unit circle T. We prove, for z �9 T, 

results analogous to those of Proposition I for +1. We also study rotational 

symmetries of spectra. Writing Sp h rather then Sp ~r~,n(h), we give the following 

characterization (see Propositions 3 and 5). 
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PROPOSITION II: Let F, S and h be as above and let ~ be the Cayley graph of 

P with respect to S U S -1 . The peripheral spectrum of h is a dosed subgroup 

of T. Moreover, for [z[ = 1, the following are equivalent: 

(i) z E Sp h, 

(ii) Sp h is invariant under multiplication by z, 

(iii) there is a character X: F ~ T such that x(S) = {z}.  

Under conditions O) to Oii), it is also true that Sp,~(h) is invariant under 

multipllcation by z. If z = -1 ,  conditions O) to 0ii) are also equ/valent to 

(iv) the graph 9 is bicolorable. 

Section D is about K a z h d a n %  p r o p e r t y  (T).  Given a group F and a set of 

generators S we introduce the Kazhdan constants 

~(r, s )  = inf~(~, s )  

where the infimum is taken over all representations z" of F in a separable Hilbert 

space which have no nonzero fixed vector, and 

~(r, s) = inf{ , (~ ,  s): ~ e #, ~ # x, } 

where I' denotes the u n i t a r y  dua l  of F, namely the set of all (equivalence classes 

of) irreducible representations of I". Here again, the fact that any of these con- 

stants are zero or not does not depend on S. Indeed to(F, S) > 0 if and only if F 

had Kazhdan's Property (T): see [Kazl,tHaV]. It is also known that K(F, S) > 0 

if and only if ~r S) > 0 [DeK: Lemme 1]. More precisely, one has obviously 

~(P, S) > tr S), possibly with strict inequality, and one may show [BAH] that 

~(r,  S) > (2lsl)-�89 ~(r,  s) .  The following result improves a previous result of the 

third author [Val]. 

PROPOSITION III: (1) Assume that F has Property (T), and set 

~(r , s )  2 
21sl 

For any z in the peripheral spectrum of h (in particular for z = 1), the set 

Sp h n {w e c: o < Iw - zl < ~} 

is empty. Moreover, the eardinality of the peripheral spectrum is at most equal 

to ~r/hrcsin (e/2). 
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(2) We assume that S -1 = S and we choose a real number  ~ > O. Suppose 

moreover that 

either Sp h C [-1,1 - ~] V {1} 

or - 1 e Sp h C { - 1 } U [ - 1 + e ,  1]. 

Then r has Property (T) and S) _> 
In particular, when S -1 = S, we see that F has Property (T)  i f  and only i l l  is 

an isolated point in Sp h. 

In the final Section E of this paper, we consider a discrete group F with Prop- 

erty (T). It was shown by Wang and more recently reproved by Wassermann 

that 1" has at most finitely many (inequivalent) irreducible representations of any 

given dimension m < ~ (see Theorems 2.5 and 2.6 of [Wan] and Corollary 2 

of [Was]). We apply the preceding theory to obtain an asymptotic bound for 

the number Irrepr(m ) of irreducible representations of 1" of degree at most m, 

namely: 

PROPOSITION IV: Let r be a discrete Kazhdan group, with a given finite sym- 

metric generating subset S; then 

Irrepr(m ) = 0(e A' ' ' )  

for some constant A depending on F and S .  

A.  T h e  s p e c t r u m  n e a r  1 

We begin by briefly discussing group C*-algebras; although they do not play a 

fundamental role in this paper, they do provide a convenient framework. 

Let 7r be a representation of the group F on a Hilbert space 7~ (in this paper, 

all representations are unitary). The norm closure of ~r(C[F]) in the algebra of all 

bounded linear operators on ~ is a C*-algebra denoted by C*(F). For example, if 

~r is the universal representation ~r=,, of F, we obtain the full C*-algebra of F. We 

shall follow common practice and denote it simply by C*(F). It has the following 

universal property: every representation z" of F extends to a *-representation 

C*(F) --, C~(F), again denoted by ~r [Dix: 13.9.3]. Considering the left regular 

representation $, we obtain the reduced  C*-algebra C~,(F). It follows from 

a standard result of Hulanicki [Ped: 7.3.9] that the canonical *-homomorphism 

$: C*(F) ~ C~,(F) is an isomorphism if and only if F is amenable. 
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From now on we assume that F is given together with a finite set S of generators 

and we consider the operator 

1 ~ s ~ c'(r). 
h = ~ sES 

Clearly HhH < 1, and h is self-adjoint if and only if S is symmetric (i.e. S = S-1).  

We denote by Sp x the s p e c t r u m  of an element x of a C*-algebra. 

PROPOSITION 1: I f  X: F ~ {z e C: ]z] = 1} is a character o fF ,  t h e n x ( h )  e Sp h. 

In part icular the spec t rum of h always contains 1. 

Proof." If x = ~]~er z'r7 E C*(F) is an element of C[F], then 

x(x) = ~ z~x(~). 

In particular x (h  - x (h ) )  = 0 and therefore h - x (h )  is not invertible in C*(F). 

The second assertion follows with X = Xl �9 | 

Let 7"/be a Hilbert space. We denote by $1(7-/) the unit sphere {~ E ~/: ]1~]1 = 

1}. Let x be an operator on 7/. Recall that Sp x # 0 if and only if ~ # {0}.  We 

say that  x is a c o n t r a c t i o n  if ]IzH _< 1 .  In the following four lemmas, we collect 

standard material. 

LEMMA 1: Let  x be a contraction on a Hilbert space 7-[, let ~ E S 1 (7"l) and let e 

be a real number ,  e >_ O. 

(1) I f  I l x~ ' -~ l l - <~ ,  then 11�89 + x * ) , ' - ~ ' l l  < v ~ .  

(2) I f  11�89 + ~ ' ) , '  -,'11 < ~, then I1~,' -,'11 -< V~ ' .  

Proof.. U I1~' - ,'11 < ~, then IIx,'ll > Ik'll - I1~,' - ,'11 > 1 - ~ ,,~d 

( 1  - ~)2 + 1 - 2Re<~ lxQ < I1~,' - ,'11 ~ < d 

so that Re(~[x~) _> 1 - r and 

Consequently 

I1~(~ + x*)r - ~11 ~ _< II~ll ~ + 1 - 2(~ I (x -1- x*)~) 

_< 2 0  - {~l~(:~ + x*)~)) 
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and (1) holds. 

Similarly, under the hypothesis of (2), one has Re(~[x~) > 1 - e and 

71 

Hx~ - ~I[ 2 _< 2(i - Re(~Ix~)) _< 2e 

so that (2) holds. | 

Remark:  It is easy to see (with 7~ = C) that the constant v ~  in Claim (2) is 

best possible. However the constant in Claim (1) is not. We do not know the 

best constant here. 

LEMMA 2: Let x be a contraction on a Hilbert  space Tl. 

(1) ger(x - 1) = ger(�89 + x*) - 1) = Ker(x* - 1). 

(2) 1 e Sp x i f  and only i f  there exists a sequence (~i) o f  vectors in SI(?'f) such 

that IIx~ - ~lf -~ o as / ~ ~ .  

(3) 1 e Sp x ~ 1 e Sp(�89 + ~*)) ,~ 1 e Sp ~* .  

Proof: Claim (1) follows from Lemma 1 with e = 0 . 

To prove the non-trivial implication in Claim (2), suppose that 1 E Sp x. If 

the range of x - 1 is not dense in 7"/, then ger(x* - 1) ~ {0}. But ger(x - 1) -- 

ger(x* - 1) by (1), so that any sequence in ger(x - 1) N $1(7"/) does the job. If 

the range of x - 1 is dense in ~ ,  then inf{[l(x - 1)~H: ~ e $1(~)} -- 0 (otherwise 

x - 1 would be invertible), and the existence of an appropriate sequence (~i) is 

again obvious. 

Claim (3) is a straightforward consequence of Claim (2) and of Lemma 1. | 

LEMMA 3: Consider a Hilbert space 7i, a vector ~ 6 S1(7-/), a real n u m b e r  ~ >_ O, 

an integer n > 1, a sequence y l , . . .  ,yn of  contractions on ~ ,  and set 

z = l_(y, + . . .  + yn). 
n 

I f  I[x~ - ~]1 <- e, then I]Yi~ - ~11 <- ~ for a/1 j e {1 , . . . ,  n}. /n particular 

K e r ( x - 1 ) =  A K e r ( y i - 1 ) .  
l < j _ < n  

Proof: As in the proof of Lemma 1, we compute 

n 

1 - ~  < Re(~lx~) -- n 
k----1 
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As P~(~lw0 < z for all k e {1 , . . . ,  n}, it follows that 

and thus 

IlvJ~ - ~11 = -< 2he 

for all j e {1, . . .  ,n} . | 

LEMMA 4: Given r, S and 7r as above, ~(Tr, S) = 0 if and onJy if the trivial 

representation X1 of r is weakly contained in ~r. 

Proof." For each integer n >_ 0, denote by B, the set of those 7 E r for which 

there exists a sequence Sl,..., s, of generators in S U S -I such that 7 = sl... s,. 

Consider a real number e > 0 and a vector ~ E 81(~) such that 

max I1~(~)~ - ~11 < ~(~,  S)  + ~. 
sES 

For any 3, = sl -..  s ,  E B , ,  one has 

I1~(~)~ - r -< ~ I1~(~1-. .  s~ - , )C~(sr162  - r 
j= l  

< n(~(~, S) + ~). 

It follows that  

infr []1r(7)~ - ~[[ < ntc(Tr, S). 

In particular, the lemma is nothing but a reformulation of the definitions. | 

Remark: It follows from Lemma 4 that the condition to(w, S) = 0 does not 

depend on the finite set S of generators. 

Proof of Proposition I in the Introduction: Claim (1) follows from Lemmas 2(2) 

and 3 applied to 
1 

sES 

and from Lemma 4. 

Claim (2) follows from the last assertion of Lemma 3. 

Let us denote by ~r 7 the restriction of ~r to the space ?-I 7 of ~'(F)-fixed vectors. 
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Observe that Sp lr(h) = Sp ~rT(h ) U Sp Try(h). Observe also that Sp ~rT(h ) 

is either empty, if 7t 7 = {0}, or reduced to {1}, if 7/7 # {0}. The first con- 

clusion of Claim (3) follows from this. Moreover 1 r Sp I r f (h)  implies that 
l ~ S p  •  7r 1 (~(h + h*)) by Lemma 2 (3), and the second conclusion of Claim (3) 

follows similarly. 

Write s for ~(,~, S)2/(21Sl) and choose ~ e S'(7/). By the definition of ~(Tr, S), 
there exists s E $ such that 

II.(S),~- ,'11 >- ,(=, s )=  ~/5]SlS. 

Lemma 3 shows that II~(h)~ - ~11 -> s. Choose now w e C such that Iwl < s. 

Then 

II-(h)~ - (1 + w)~ll ___ S - Iwl . 

As ~ is a uni tary representation, one has ,,(~, S -1)  = ~(,r, S). Thus one has also 

I I - ( h ' ) , '  - (a + ~)~11 >- s - I~1. 

Since these hold for all ~ e S~(7/), the operator ~r(h) - (1 + w) is invertible, and 

Claim (4) holds. 

If S -1 = S and 1 is isolated in Sp ~r(h), we may consider the nonzero spectral 

projection p of the self-adjoint operator ~r(h) corresponding to the isolated point 

1 in the spectrum of ~r(h). The restriction of ~r(h) to pT/ coincides with the 

identity, and the restriction of r(h) to (1 - p ) 7 / h a s  its spectrum disjoint from 

{1}. In other words, one has p7 /=  7/7 and 1 • Sp Ir f (h) .  

The hypothesis of (6) and spectral theory imply that, for all ~ E $1(7/), one 

has 

Re(~l~r(h)~ ) -- (~lTr(h)~) < 1 - e .  

Thus there exists s E S such that 

R e ( , ' l = ( , ) O  _< 1 - 

and this implies that I I = ( s ) ~  - ~11 = = 2(1 - Re(~l~r(s)~)) _> 2e .  | 

Remark: In Proposition I (4), assume moreover that S -1 = 5' and that ~r(S) 

does not contain any element of order 2. Then 

Sp = ( h )  c [ - 1 , 1  - , ( ~ ,  S)'/ISl]. 
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The point is that 2IS I can be replaced by IS I. For if s E S is chosen with 

IIr(s)~- ~112= 2 -  ((~r(s)+ 7r(s-1))~]~/ >_ ~(~r,S) 2 then ((Tr(s)+ r(s-1))~l~) < 

2 -  ~r 2, so that (~r(h)~l~) < 1 -~(~r,S)2/]SI. 

SOME CONSEQUENCES OF PROPOSITION I (1). 

(a) When ~r is the left regular representation ~ of P, Proposition I (1) gives 

Kesten's characterization of amenability [Ke2]: 

1 E Sp A(h) if and only if F is amenable. 

(b) 

Indeed, F is amenable if and only if Xl is weakly contained in A, by a 

classical result of Hulanicki [Hul]. For a generalization of Proposition I (1) 

see also Theorem 1 in [SOW]. 

For any representation 7r of F, Bekka has introduced a notion of amenability, 

and ~r is amenable if and only if Xl is weakly contained in 7r | ~, where 

denotes the conjugate of 7r. (See [Bek: Def. 1.1 and Th. 5.1]; for ~', see e.g. 

[Dix: 13.1.5].) As A | ~ is weakly equivalent to A [Dix: 13.11.3], it follows 

that A is amenable if and only if F is amenable. From Proposition I (1) of 

Proposition 2, one has 

1 E Sp((Tr @ ~)(h)) if and only if 7r is amenable. 

For example, let a be the adjoint representation of F on/2(F - {1}) defined 

by 
= 

then Theorem 2.4 of leek] states that 1 E Sp((a | &)(h)) if and only if r 

is s t rongly  inner  amenable  (namely "inner amenable" in the sense of 

[BeH]). 

Similarly, one can see that 1 is an eigenvalue of (~r | if and only if ~r has a 

finite dimensional subrepresentation (see the remark following Lemma 9 below). 

Remark on Laplacians: Let us now explain how h is related to a "combinatorial 

Laplacian". Let first ~ be a g raph  without loops or multiple edges (the graph 

is finite or infinite, and non-oriented). We denote by ~0 the set of vertices of ~, 

by 12(g ~ the space of square-summable functions from ~o to C, and by (ev)ve~0 

the canonical orthonormal basis for the latter space. The ad jacency  mat r ix  

A = (Av,~)~,~e~0 of ~ is defined by A~,~ = 1 if v r w and there is an edge 

between v and w, and by A~,~, = 0 otherwise. 
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We assume from now on that ~ has bounded degree, namely that the number of 

neighbours D~ = ~wer A~,w of a vertex v is bounded by some Dmax. The degree 

operator is the bounded self-adjoint operator D on 12(~0), defmd by De~ = D~ev 

for all v E ~0. As ~ has bounded degree, the matrix A defines a bounded self 

adjoint operator on 12(~0), denoted again by A. The (combinatorial) Laplacian 

Ar of ~ is defined by 

A g = D - A .  

In particular, let F be a group generated by a symmetric finite set S such that  

1 ~ S. Let ~ = ~( r ,  S) be the corresponding Cay ley  g raph ,  defined by ~0 = F 

and A.t,,.r, = 1 if and only if 717~ -1 q S. As A(h) = 1{7 E , e s  A(s), one has 

~ = ISl - ~ A(s) = ISl(1 - A(h)) .  
sES 

We define more generally 

A = ISl(1 - h) 6 c*(r) 

so that Ar = A(A). 

It is important that A is a positive element of C*(r). We shall express some 

results in terms of h and some others with A. Upon scaling and translating we 

could easily express all results for both h and A. 

Examples: 

(1) Consider an integer d > 1, the free abelian group Z d, and the standard 

set S = { ~ L . . . ,  s~}  of generators having a -  1 coordinates zero and one 

coordinate 1 or -1 .  Then Sp A(A) = [0,4d], as can be viewed as follows; 

see also [MOW: 7.B]. 

For each a 6 R, define a character X~ of Z d by 

Xo(S~ =) = e •176 j = l , . . . , d .  

It follows from Proposition 1 that 

E; cos  Sp h. 
sES 

Thus Sp h = [-i,I] and Sp A = [0,4 4. As Z ~ is amenable, A(A) and h 

have the same spectrum. 
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(2) Let r be the non-abelian free group on a free set S+ of d generators, and 

consider the symmetric set S = S+ U S+ 1, of cardinality N = 2d. Then 

Sp A(A) = I N - 2x/-N - 1, N -{- 2 N~/-N-Z-1- I]. 

(3) 

Observe that the Cayley graph ~( r ,  S) is the homogeneous tree of degree 

N, so that it is easy to give a meaning to the above formula for any integer 

N, even or odd; this formula is indeed a result of Kesten [Kel]. See also 

[Pat: 4.31]. 

On the other hand the canonical map sending the generators of S to the 

corresponding generators of 7. a in example (1) extends to a *homomorphism 

of c * ( r )  onto C*(zd). It follows that Sp(A) = [0, 4d]. 

If r is the non-abelian free group on d generators s l , . . . , s d  and S = 

{s l , . . .  ,s~}, so that S -1 ~ S, then 

Sp h = {~ e C: I~I < I}. 

For if �9 E C, I*I -< I, there exists zj E C, Izsl = I (j = I , . . .  ,d) such that 

z = d(Zl + . . .  + zd). 

Let X be the character of r defined by X(sj) = zj for j = 1 , . . . , d .  Then 

z = x(h) E Sp h by Proposition 1. 

(4) Choose an integer k > 2, let r = Z/kZ . . . .  �9 Z/kZ (r times), identify each 

factor r j  = Z/kZ of the free product to a subgroup of I', and define 

s= U (rj-{1}). 
1<j<r 

If r > 2, then 

Sp h = [ - i / ( k  - i),  i] 

by [Mlo: Prop. 3]. Note that this set is independent of r. 

Let p = ((k - 1)(r - 1)) I/2 and note that IS[ = r(k - 1). By [loP: Th. 3] 

or by [KuS: Th. 1], one has 

{ k-2- p k_-2+ l 
[ - - ~ i -  ' tsL J' 

i f k_<r ,  

r k _ 2 _ 2 p k _ 2 + 2 P l  
u [  i9i ' .i' i lk>,. .  
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(5) 

(6) 

If F is the free product F1 * ' "  * Fr of r finite groups F 1 , . . . , F r ,  each of 

order k, and if S = U 1 < i < r ( F i  - {1}) as above, then Sp A(h) remains the 

same, as noticed in [CS2: w (the reason being that the respective Cayley 

graphs are isomorphic). 

Notice in this example the appearance of isolated points in Sp A(h) . That 

these also occur in the case of a free product of two finite groups of distinct 

order was explicitly worked out in [CSI: Theorem 1]. 

Let F be a finite group and let S be a union of conjugacy classes of F such 

that S -1 = S. It is easy to write the spectra of the corresponding A in 

terms of the values on s E S of the irreducible characters of F. Several 

examples are worked out in Chapter 8 of [Lub]. 

Let F be a group generated by a finite symmetric set S -1 = S, so that A(A) 

is the combinatorial Laplacian of the Cayley graph ~(F, S). What  we have 

already observed just after the proof of Proposition I can be reformulated 

a s  

1" is non-amenable if and only if Sp A(A) C [r 21SI] for some e > 0. 

The last formulation carries over to other graphs, and one may estimate e 

in terms of an appropriate "isoperimetric constant" of the graph; see [Ger: 

Th. 2] and [BMS]. 

(7) Consider an integer 1, the free group 1" on a set S+ = {s l , . . . , s~} of l 

generators, the symmetric set S = 5'+ U (5'+) -1, and let 

1 c ' (r )  
sfiS 

be as usual. Consider also a set {~1, . . .  ,~l} of isometries of the sphere 

S2. There is a corresponding action of F on $ 2 whereby sj acts as ~j ,  and 

consequently a representation 7r of 1" on the Hilbert space 

where p denotes the rotation-invariant Lebesgue measure on S 2. It can be 

shown in this case that 

llTr(h)ll _~ ~ x / ~ -  1. 
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In case t = (p + 1) /2  for a prime number p ---- l (mod 4), a deep theorem 

of Lubotzky, Phillips and Sarnak shows that one may choose the ~o~s such 

that 
[[rr(h)[[ = 2 v ~  

p + l "  

We refer to [CdV]. 

EXAMPLES FOR FREE GROUPS AND FOR SL2(~,). 

Let us first construct an irreducible representation ?r of the free group F2 on two 

generators Sl, s2 which shows that the hypothesis S -I = S cannot be removed 

from Claim (5) of Proposition I. 

Set 7"/= L~[0, I]. Let V be the Volterra integral operator defined by 

(v~) (~ )  -- ~(~)e~ 

for all ( �9 L ~ [0,1] and for all a e [0, 1]. Set 

x = (1 + v )  -1. 

It is known that Sp x = {1}, that x has no eigenvector and that llzll = 1; see 

Number 148 and Problem 150 of [Hal]. Let x = ulzl be the polar decomposition 

of z. As Izl is a contraction, one may define two unitary operators 

v, = Ixl + i v / f -  I~1 ~ and v2 = I~1 - iv/1 -I~1 ~. 

If we set ul = uvl and u2 = uv2, one has 

1 
x = ~(ul + u2). 

Define the representation r of F2 on 7"l by 

z r ( s j ) = u j ,  j = l , 2  

so that x = 7r(h). Then 1 is of course isolated in Sp r(h) = {1}, but 7-/= 9"/0 ~ 

by Proposition I(2). 

Let us now show that 7r is irreducible. We shall use the fact (discussed in 

Number 151 of [Hall) that any subspace of 7"/which is invariant under the Volterra 

integration operator V is one of 

u o  = {~ �9 L~[0,1]: r = 0 for almost all Z �9 [0,-1} 
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for some a �9 [0, 1]. Similarly, any subspace of 9/invariant under V* is one of 

9/a = {~ �9 L2[0, 1]: ~(~) = 0 for almost all # �9 [a, 1]} 

for some a C [0, 1]. It follows that the C*-algebra C*(V, V*) generated by V 

and V* acts irreducibly on 9/. As (1 + V) -1 = ~(~r(sl) + ~r(s2)), the C*-algebra 

C*(F2) contains C*(V, V*), and it follows that the representation ~r is indeed 

irreducible. 

Let us denote by K(7/) the algebra of all compact operators on 9/. Since 

C*(V, V*) is a subalgebra of K(9/) that acts irreducibly on 9/, we have 

C ' ( V , V * )  = K ( T t )  by [Dix: 4.1.6]. From that it follows that C~*(F2) is the 

linear span of K(9/) and of the identity. Consequently, the only irreducible rep- 

resentations of F2 which are weakly contained in 7r are X1 and Ir itself [Dix: 

4.1.10]. Afortiori X1 is weakly contained in r | #, hence 7r is amenable. 

It was pointed out to us by M. Cowling that, already in 1951, Yoshizawa 

has constructed an infinite dimensional irreducible representation of F2 which is 

amenable. But Yoshizawa's representation has properties quite different from ~r, 

because the former weakly contains any irreducible representations of F2 [Yos: 

w 

Consider now the group F = SL(2, Z), together with the subgroup F0 generated 

by 

S l =  (10 21) and s2=  (12 01). 

It is a classical fact that F0 is free on {sl,s2}, and that it is a normal subgroup 

of index 12 in F. Let a be the representation induced by ~r from F0 to F. The 

following result, which is certainly well-known, shows that a decomposes into 

finitely many irreducible representations of F. We owe the proof to D. Poguntke. 

LEMMA 5: Let  Fo be a normal  subgroup o f  ~ni te  index  o f  a group F, let  lr be an 

int]ni~e dimensional  irreducible representat ion o f  F0 and let  a be the  represen- 

tat ion induced by 7r from F0 to F. Then  there exis ts  a t~nite n u m b e r  o f  int~nite 

dimensional  irreducible representat ions  al  , . . . , an o f f  such that  a = ~ l  <_j<, a j .  

Proof: Let p: E ---} F/F0 be the bundle associated with the principal bundle 

F ---} F/F0 and with 7r, and let /g be the Hilbert space of sections of p, so that 

a acts naturally on K:. For each z E F/F0, let K:x be the subspace of sections 

with support in {x}. As F0 is normal in F, each/Cz is a(F0)-invariant and/C = 
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(~)z~r/r0/C, is a decomposition of E into infinite dimensional irreducible (alro)- 

subspaces. It follows that the commutant a(ro) '  of a( ro)  in the algebra of all 

bounded operators on E is a subalgebra of the algebra of N-by-N matrices, where 

N = [1`: r0l; moreover any non-zero projection of a(r0) '  is infinite dimensional. 

A fortiori, the eommutant tr(F)' of a(1") is a finite dimensional algebra. Let 

{Pl , . . .  ,P,} be a set of pairwise commuting minimal projections in a(P) '  such 

that ~ I< j< , ,P J  = 1. For each j q {1 , . . . , n} ,  the image of pj is an infinite 

dimensional subspace of/C which is invariant under and irreducible with respect 

to a(I'), and one may define aj  as the corresponding subrepresentation of tr. 
| 

Let us consider again I' = SL(2,Z)  ~ 1"0 = (sl,s2), the representation ~r 

of 1`0 on L2([0,1]) constructed above and the corresponding a = Indrr, (~r) = 

(~)l<j___, aJ" Since the trivial representation of 1`0 is weakly contained in % the 

trivial representation of I" is weakly contained in tr, and thus also in crj for some 

j E {1 , . . . ,  n}. A fortiori, the trivial representation of 1" is weakly contained in 

aj  | o~j, meaning that aj  is amenable. We have proved: 

PROPOSITION 2: There exists an infinite dimensional irreducible representation 
of SL(2, Z) which is amenable. 

This answers a question of M. Bekka [Bek: Section 5] that was motivated by 

the fact that,  because of property (T), no such representation exists for SL(n, Z) 

when n > 3. 

B. The peripheral spectrum 

We consider again a finitely generated group 1`, a finite set S of generators of r 

and 

1 c ' (r ) .  
h = "~1 sES 

Let ~r be a unitary representation of r on a Hilbert space 7~. In this section, we 

study the peripheral spectrum of 7r(h) by means of the techniques of Section A. 

Given any multiplicative character X of 1  ̀(i.e. a homomorphism X from 1  ̀to 

the circle group T), we define 

tCx(~', S) = inf~sl(~) m ~  II~r(s)~ - x(s)~ll 



VOI. 81, 1993 SPECTRUM OF THE SUM OF GENERATORS 81 

Clearly, i f x  = X1, then ~x(Tr, S) = ~(~r, S); also ~x(~r, S) = ~()27r, S) for any char- 
acter X, where )2 is the conjugate character and the product )2~r is the pointwise 

product. We say that X is weakly  con ta ined  in Ir if tr S) = 0 .  

LEMMA 6: Let ~r be a representation of F on a Hilbert space Tl, and let z be a 

complex number. One has z E Sp ~r(h)f3 T i f  and only i f  there exists a character 

X o f f  such that X(S) = {z}, and X is weakly contained in ~r. 

Proof: The "if" part is clear. For the "only if" part, Lemmas 2 and 3 applied 

to s show that there exists a sequence (~j) of vectors in S1(~/) such that  

(*) l im II (s)6 - z r = 0 
j-*oo 

for all s E S. 

k, k' E Z with 

then 

Remark the following: given 7, 7' E F such that  there exists 

lira - zk ill = 0, 
j---,oo 

.lim II,r('/)  6 - zk' r = 0, 
J--*oo 

lira [[a'(77')~ j - zk+*'~j][ = O. 
j--*oo 

This remark shows that  the constant function X: S ~ T of constant value z 

extends unambiguously to a character X of F. Finally, it foUows from (*) that X 

is weakly contained in 7r. | 

Lemma 6 has the following consequence for the spectra of h in the universal 

and regular representations. 

LEMMA 7: For any z in the peripheral spectrum of h, one has Sp h = z �9 Sp h 

and Spa(h)  = z .  Sp A(h). 

Proof: Let X be a character of F such that x(S) = {z}, as in Lemma 6. Then 

X~r,n is unitarily equivalent to ~r,,, so (xTr,,)(h) = zTr,,n(h) has the same spec- 

t rum as ~un(h). Observe now that  the preceding argument is valid for any 

representation a" of F such that xTr is unitarily equivalent to lr for any character 

X of r .  In particular it holds for ~r -- A (see [Dix: 13.11.3]). 

Definition: Given an integer n _> 2, we say that  the set S of generators of F is 

n-coloring (bicoloring for n=2) if there exists z, a primitive n-th root of 1, and 

XS,,, a character of F mapping S onto {z}. 
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Notice that if Xs,, exists for one primitive n-th root z, then it exists for all. 

Below, we shall write n.(rr, S) for .xs,z(~r, S). 

PROPOSITION 3: Let n >_ 2 be an integer. 

(1) The peripheral spectrum ofh  is a dosed subgroup ofT.  It contains the set 

of n-th roots o f l  i f  and only if  S in n-coloring. It coincides with T i f  and 

only i f  there exists a homomorphism a: F ~ Z such that a( S) = {1}. 

(2) If  S is n-coloring, then the Cayley graph ~(P, S U S -1) is n-colorable. The 

converse is true i f  n = 2, namely: 

S is bicoloring r - 1  E Sp h r G(F, S U S -1 ) is bicolorable. 

(3) The peripheral spectrum o/'A(h) is either empty or a dosed subgroup ofT.  

Moreover, the following are equivalent: 

(a) F is not amenable; 

(b) 1 r Sp )~(h); 

(c) Sp ~(h) 0 T = ~ .  

Proof'. 

(1) The first assertion follows from Lemma 7, the second from Lemma 6. The 

"if" part of the third assertion is easy; for the "only if" part, select some 

irrational real number 0, and set z = e 2~ie . By Lemma 6, there exists a 

character X of F such that x(S)  = {z}. Identifying the subgroup generated 

by z with Z, we see that we can take X for a. 

(2) Recall from [Gra:Chapter VII] that a graph ~ is n-colorable if there exists 

a partition G~ = ~ II . . .  II ~ of its vertices, such that no edge of ~ has 

both its extremities in the same class. From that definition, both assertions 

are straightforward. 

(3) The first assertion follows from Lemma 7. The second follows from the fact 

that  a group F is amenable if and only if its regular representation A weakly 

contains some finite-dimensional representation [Fel: Theorem 3]. | 

Definition: Fix an integer n _> 2, and z, a primitive n-th root of 1. Let S be a 

n-coloring finite set of generators of a group F, and let Xs,, be the corresponding 

character. Given a representation rr of F on a Hilbert space 7~, we set 

I-~,, = {~ �9 I-~: 7r(7)~ = Xs,,(7)~ for all 7 e F} 
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and we denote by 7"/s~,~ the orthogonal complement of T/s, , in T/. The two 

corresponding subrepresentations of 7r are denoted by ~'s,, and lr • S , Z  �9 

The following result, analogous to Proposition I, can easily be rephrased 

for any complex number z of modulus 1. For notational convenience, we chose 

to stick to roots of 1. 

PROPOSITION 4: Fix  an integer n > 2, and z a pr imi t ive  n- th  root o f  I. Let  7r 

be a representat ion o f  P on a Hilbert  space ?'l. 

(1) z E Sp 7r(h) i f  and only i f  S is n-coloring and XS, z is weakly  contained in 

lr.  

(2) z is an eigenvalue o f  ~r(h) i f  and only i f  S is n-coloring and Xs, z is contained 

in (that is # {0}). 
(a) I f  S is n-coloring, i f  z �9 Sp 7r(h) and i f  z r Sp ~r~,~(h), then z is an isolated 

point  of Sp 7r(h). 

(4) /f,~z(~r, S) > 0 then Sp ~r(h) is disjoint from the open ball {w �9 C: [w - z I < 

s)= /(21Sl) }. 
A s s u m e  moreover  ~hat S = S -1 . 

(5) I f  S is bicoloring and i f -1  is isolated in Sp ~r(h), then - 1  r Sp ~r~_,(h). 

(6) / fSp zr(h) C [-1 + e ,  1] for some e > O, then ~_,(Tr, S )  >_ v ~ .  

Proof'. (1) is just a special case of Lemma 6. We leave the details of (2) to (5) 

to the reader (see Proposition I). For (6), observe that 

implies 

Re(~l~(s)~)) _> - 1 + r  

[l~r(s)~ + ~ll 2 = 2(1 + Re({]~r(s)~)) _> 2e. | 

A CONSEQUENCE OF PROPOSITIONS I(1) AND 4(1). 

Recall that a group F is amenable if and only if its regular representa- 

tion A weakly contains some  finite dimensional representation [Fel: Theorem 3]. 

Consequently, for F and S as usual, the following are equivalent. 

(i) F is not amenable. 

(it) Sp A(h)is disjoint from {1}. 

(iii) Sp A(h)is disjoint from {1,-1}.  

There is a straightforward analogue of Proposition 4 involving a complex 

number z E "~" and a character XS, z: r --* T such that X s , , ( S )  = {z}. It follows 

that (i), (it), (iii) above are equivalent to 
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(iv) Sp A(h) is disjoint from T .  

C. S y m m e t r i c  spec tra  

Let Q now be an or iented  f inite  graph.  One defines naturally an (in general 

not symmetric) adjacency matrix A = (Av,w),,~eo o for Q. Suppose that ~ is 

connnected by oriented paths, namely that the matrix A is irreducible in the 

sense of Perron-Frobenius theory. It is known that the spectral radius p of A is 

a simple eigenvalue of A, and moreover that the following are equivalent: 

(i) ~ is bicolorable, 

(ii) - p  E Sp A, 

(iii) # E S p A ~ - # E S p A .  

(See e.g. Chapter XIII of [Gan].) 

The purpose of this section is to start to investigate how this could carry 

over to the situation of the previous sections. 

Given a self-adjoint operator x on a Hilbert space 7~, we set 

re_in Sp z = min{o~: a E Sp x) = min{(~]x~): ~ E S1(~)}, 

max Sp z = max{a: a E Sp z} = max{(~iz(): ~ E $I(7"0}. 

Let again I', S and h be as in Section A. 

PROPOSITION 5: We assume that r is not reduced to one dement. 

(1) If the set S is bicdoring, then the spectrum of A(h) is symmetric with 

respect to O. 

(2) The following are equivalent: 

(i) $ in bicoloring. 

(ii) The spectrum of h is symmetric with respect to O. 

(iii) - 1  E Sp h. 

Suppose moreover that S -1 = S. 

(3) One has 
1 

maxSp h >_ maxSp $(h) >_ ~ > 0 

and 

rain Sp h < rain Sp A(h) < O. 

(4) h e 1 g S, then one has moreover 

1 
minSp h < minSp A(h) < - ] ~  < O. 
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(5) (Due to Kesten.) One has 

IminSp A(h)l < maxSp A(h). 

(6) (Due to Kesten.) I f  S -1 = S one has 

max Sp A(h) > 2 V / ~  - 1 
- Isl 

If ISl > 2 then one has equality if and only i f  r is free on a set S+ of 

generators such that S = S+ O ( S+ ) -1. 

Proof." 

(1) This is a consequence of Lemma 7. 

(2) This follows from Lamina 7 and Proposition 3 (2). 

As usual, we denote by (6.~).~r the canonical basis of 12(r). Suppose first 

that F is finite and r = S. Then A(h) is the projection from 12(r) onto the line 

C ~ e r  e.t, so that Sp A(h) = {0,1}. 

To prove (3) and (4), we may assume from now on that F # S. As S 

generates F, and as S -1 = S, it follows that S is not a subgroup of F, so that 

there exist two (not necessarily distinct) elements s, t E S such that st ~ S. We 

define the vectors 

and 

1 

1 
. _  = ~ ( 6 , - ~ , , )  

Vz 

in $1(12(F)). We have 

(~ (h) ,+ l ,+)  = ~{(~(h)*,16,) + (~(h)*,l*.,) + (~(h)6.,l~,) + (~(h)6., l*. ,)}.  

The right hand side is equal to 

o + N + N + o  = l/ISl, 

if 1 • S and to 2/]SI if 1 E S. Thus 

maxSp A(th) _> 1~IS ] 
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in all cases. 

Similarly ()~(h)r/_ Ir]_ ) is equal to -1/ISl if I ~ S and to 0 if 1 6 S, so that 

minSp ~(h) is bounded above by -1/ISl if 1 r S and by 0 in all cases. This 

completes the proof of Claims (3) and (4). 

Let us now show (5), which is due to Kesten [Kel, Formula 2.11]. Let 

{E,},E~ be the spectra] resolution of A(h) (see e.g. [RSN: no. 107]), and let a 

be the probability Borel measure defined on R by 

a(B) = / B  d(E,6116,> 

for all Borel subsets B C R, where 61 6 12(F) denotes the Dirac function of 

support {1} C F . 

Let us first observe that the spectrum Sp ~(h) coincides with the support 

Supp a. Indeed, let a 6 R. Then 

a 6 Sp ,k(h) r for all e > 0 one has E(]a - e, a + e[) r 0, by definition of 

the projection-valued measure E associated to {Et}tER 

r for all e > 0 there exists 7 6 F such that 

(E(]a - r a + r ~ O, because a non-zero projection has 

some non-zero diagonal matrix element 

r for all r > 0 one has (E(la - r  a + ~[)6,16,) # 0, because 

A( h ) and E(]a - ~, a + ~[) commute with the right regular 

representation of F 

r a 6 Supp a, by definition of a. 

Let us also observe that all moments of a are non-negative. Indeed, for 

each n > 0 the n-th moment of a is 

= fR tnda(t) = (A(h)"~a161)" /An 

As ISl,~(h) is the adjacency matrix of the Cayley graph ~(F, S), the number 

(ISlnA(h)"6a I~l)is also the number of closed paths of length n in G(F, S) starting 

at 1, so that  #n > 0. (Otherwise said: #n is the probability that the appropriate 

random walk starting at 1 goes back to 1 after n steps, so that # ,  _> 0.) 

Claim (5) is now a consequence of the following standard lemma, from 

measure theory. For claim (6) we refer to [Kel]. II 
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LEMMA 8: Let ~r be a probability Borel measure with compact support on the 

real line. Set 
- m  = min{t E N: t E Suppa},  

M = max{t E R: t E Suppa}.  

Assume that one has 

Then one has 

- m  < 0 < M, 

= [ t"da(t) > O f o r a / I n E N .  P-  
dr  

lim s u p  (tin) l[n = M = max(m, M). 

Proof." Set F( t )=  ft_ooda(t ) for all t E R. 

We claim first that 

lim sup (#n) 1/n >_ max(m,M).  

For each integer n _> O, one has 

•" < fr Itlnda(t) < max(ran' Mn)[F(M + 1) - F ( m  - 1)].  

As the square bracket is strictly positive by definition of m and M, this implies 

the claim. 

Let us now consider the moments of even order. For each n _> 0 and for 

each small enough real number e > O, one has 

m a x / / - m + ,  [ M + , }  # ,  > t2nda(t), t2"da(t) 
I ,v  - -ra--e  J M - z  

,s 

_> m a x { ( m  - e)2n[F(-m + r - F ( - m  - ~)], 

+ ~) - F(M - e)] }.  

% 

(M 6.) 2 n  [F(M 

As the square brackets are strictly positive, this implies 

lim s u p  (p2n) 1/2n ~ max{m - e, M - e}. 
n---* oo  



88 P. DE LA HARPE ET AL. Isr. J.  Math.  

As this holds for all small enough e, the left-hand side is also larger than 

max{m, M}, so that one has 

lim sup (p,) , /n = max(m, M). 
n ' - * o O  

Let us finally consider the moments of odd order. For each n > 0 and e > 0 

as above, one has 

f ~2,,+~ = t2"+~ d~(t) + t2"+~do(~) >__ 0 
m - - r  JO 

so that 

f 
M+e 

(M + e)2n+l[F(M -t- e) - F(0)] _> t2n+lda(t) 
./0 

[ - m + e  

> Itl2"+*do(t) > (m - e) 2"+l[F(-m + e) - F(-m - e)]. 

This implies again M + e >_ m - e, so that one has finally M >_ m. $ 

Remarks: (1) Suppose that S is symmetric. If S is bicoloring, then 

-min  Sp A(h) = max Sp A(h) 

by Proposition 5 (1). Conversely, answering a question in a preliminary version 

of our paper, D.I. Cartwright has shown [Car] that the equality above implies 

that S is bicoloring. 

D. A characterization of discrete Kazhdan groups 

We now prove Proposition III from the introduction. 

(1) The first assertion follows from Proposition I (4) for z = 1, and from Propo- 

sition 4 (4) for each other z on the peripheral spectrum of h; indeed, the 

sum of all (equivalence classes of) irreducible representations of r defines a 

faithful *-representation of C*(F) [Ped: 4.3.7]. To check the second asser- 

tion we notice that, by the first assertion, the distance between two distinct 

elements in the peripheral spectrum of h is at least e. Since the angle sub- 

tended by an interval of length e inscribed in T is 2Arcsin~, we see that 

the peripheral spectrum has at most ~r/Arcsin~ points. 

(2) If Sp h C [-1, 1 - e] U {1}, the conclusion follows from Proposition I (6); 

if - 1  E Sp h C {-1} U [-1 + ~, 1], then S is bicoloring by Proposition 3 

(2), and the conclusion follows from Proposition 4 (6), and the fact that 

~-lOr, S) = ,c(xs,-~r,S). 



Vol. 81, 1993 SPECTRUM OF THE SUM OF GENERATORS 89 

QUESTIONS: 

(1) Are Kazhdan groups characterized by the fact that 1 is an isolated point 

ofSp h in the case when S is not symmetric? 

(2) Assume that F has property (T). Consider a symmetric set of  generators 

S -1 = S. Let 
~_ = 1 +min{a  E Sp h: a > -1},  

~+ -- 1 - m a x { a  E Sp h: ol < 1}, 

so that 

{ - 1 + ~ _ , 1  - ~+} C Sp h C { -1}  t3 [-1 + ~ - , 1  - e + ]  U {1}. 

I f  S is bicotoring, then Proposition 5 (2) shows that e -  = r How do e_ 

and r compare in general? 

Remarks: 

(1) It has been shown in [Val] that a locally compact group G is a Kazhdan 

group if and only if there is a (necessarily unique) projection pa in C*(G) 

which is annihilated by every irreducible representation of G distinct from 

X1. If F is a countable Kazhdan group, S is a symmetric finite generating 

subset of F, and h is as usual, then 1 is isolated in Sp h by Proposition III 

(1). It also follows from Proposition I (6) that the spectral projection of h 

corresponding to 1 is the projection pr mentioned above. 

(2) If S is symmetric then everything in Proposition III (2) can be reformulated 

in terms of the Laplacian A = IS[(1 - h). For example, if F is a Kazhdan 

group then Sp A C {0) IJ [�89 s)*, 2lsl]. Conversely if Sp A C {0} U 

lisle, 2tSI] for some r > 0, then r is a Kazhdan group and ~(r, S) > v~~. 
| 

Denote by/~l(g) the smallest positive eigenvalue of the Laplacian of a finite 

graph ~. 

COROLLARY TO PROPOSITION III: Let F be a discrete Kazhdan group with a 

f~nlte set S = S -1 of generators. Let ~ = s S). Let qo be a homomorphism of 

F onto a finite group F0 whose restriction to S U {1} is injective. Consider the 

carler  graph g = g(r0,~(S)) .  Then i~,(a) >_ s 

Proof." If ,k0 is the regular representation of F0 on 12(r0), then ,k0 o T(A) is the 

combinatorial Laplacian of ~. The conclusion follows from the above Remark, 
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since 

Sp ),0 o ~(A) c Sp A. | 

Remarks: 

(1) #~(~) provides qualitative information about the graph. For example, 

graphs with large #x tend to have large connectivity and small diameter. 

See [Bie] for a survey of results in this area. The above Corollary is a slight 

improvement on Lemma 2.3 of [A1M], since the inequality k(F, S) > n(F, S) 

may be strict, even for finite groups. Also k(F, S) is easier to calculate. 

(2) M. Burger has obtained inequalities related to some Kazhdan constants for 

SL(3, Z) [Bur]. These can be combined with the Corollary to give a lower 

bound for pl when 

F = F 0 = S L ( 3 ,  Z/NZ)  ( N > 2 )  

and S is the set of all matrices of the form 

0 1 , 1 , j = - 1 , 0 , 1  
0 0 0 

and their inverses. The result is that for the corresponding Cayley graph 

p,(~) > (1 - n-' /2)2132 

where n is the product of the distinct prime factors of N. 

E. F in i t e  d i m e n s i o n a l  irreducible  r e p r e s e n t a t i o n s  o f  a K a z h d a n  g r o u p  

The aim of this section is to prove Proposition IV from the introduction. 

We first need the following simple result. 

LEMMA 9: Let F be a finitely generated group with finite generating set S. I f  Trx 

and 7r2 are irreducible representations o f f  and 1 is an eigenwdue o[ the operator 

(rrl | ~2)(h), then 7rl and ~r2 are equivedent finite dimensioned representations. 

Proof." Let 7-/1,7-12 be the representation spaces of 7h, 1r2 respectively. Using the 

usual identification of 7-ll | with the space of Hilbert-Schmidt operators from 

7-12 into 7"/1, we write 7rl | ~2 in the form 

| = - 1  
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where ~: 9/5 ~ 9tl is Hilbert-Schmidt.  

Choose ~ with Hilbert-Schmidt norm 11~]12 = 1 such that  (~h |  = ~. 

Tha t  is 

ISl ,es 

By Lemma 3, we have ( r l  | ~2)(s)~ = ~ for all s e S. It follows that  ~r,(7)~ = 

~Ir2(7), for all 7 E r .  Since r1,lr2 are irreducible, r l  ~- ~r2 and ~ is an isomor- 

phism. Since ~ is a compact operator, ~h, 1r2 are necessarily finite dimensional. 

| 

Remark: A similar argument shows that  a (possibly reducible) unitary repre- 

sentation lr of r has a finite dimensional subrepresentation if and only if 1 is an 

eigenv~ue of (~ | ~)(h). | 

Now let 9 / =  C m be a fixed finite dimensional Hilbert space. Denote by 

I[xI[2 = tr(x*x) 1/2 the Hilbert-Schmidt norm of an operator x on ~ .  The next 

result is corollary 2 of [Was]. 

LEMMA 10: Let r be a discrete Kazhdan group, let S be a finite set of generators 

of F and set 
1 : 2 - -~ ( r ,  s) ' .  

/ f  7h,~r2 are irreducible representations of F on Tl = C m such that 

II~l(~) - ~(s)l[2 < ~v ~ ,  for MI ~ e S, then ~, is e q u i ~ e n t  to ~ .  

Proof'. We may assume that  S = S -1, since 

II~I(:~) - ~2(:~)I12 = II~(~) - ~2(~)I12. 

If I:  9 / ~  9/'/is the identity map,  then 

I 1 I 2 
' ' sES 

I 
--- ~T ~llX-~(~)~(~)-III~ 

sES 

1 

s6S 
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Let T/-- m-l/2I ,  so that l l , l l 2  = 1 .  Then 

1 - ( r 1 7 4 1 6 2 1 7 4  < , .  

Therefore Sp(~h | #2)(h) meets (1 - e , 1 ] .  It follows from Proposition III (1) 

that 1 is an eigenvalue of (~rl | #2)(h) and so *ri .2_ ~r2, by the preceding Lemma. 
| 

Proof of Proposition IV from the Introduction: We continue with the notation 

of Lemma 10. 

Let n = IS] and S = {s l , . . .  , s ,} .  Define a norm on B('H) '~ by 

I10'~,... x,,)ll = ma.x IIxAl~'. 
' 1 < i < ~  

Lemma 10 says that 7rl .2_ 7r 2 whenever vl,  r2 are irreducible representations of 

F on ~ = C "  satisfying 

I1(~,( ,1) , . . . ,  ~l(~n)) - (~2(~1) , . . . ,  ~2(*~))11 < ~ v ~ .  

Let k be the number of balls of Hilbert-Schmidt radius ev/'m/2 which are required 

to cover the unitary group U(m). Then U(m) n is covered by k n balls of radius 

ev/m/2, so there are at most k n inequivalent irreducible representations of r on 

C "~. It remains to estimate k .  

Now U(m) C {x E B(Cm): [[z[[2 = v/~}. Using matrix entries as coordi- 

nates, and identifying C with R 2, we have, for the usual Euclidean norm, 

v ( ~ )  c (x e R~r"~: I1~11 = ~ } "  

It is therefore enough to find the number of balls of radius r which 

are required to cover a sphere of radius v ~  in R 2 ~ .  This is the same as covering 

a sphere of radius 1 with balls of radius ~/2. A sharp asymptotic bound for this 

is given by the CoroUary in [Wyn]. There it is shown that k = e ~''2 balls are 

enough to do the job, where a > 0 is constant. In fact, for sufficiently large m, we 

need only choose a > - 2  log sin 0, where 0 is the half-angle subtended at 0 by a 

ball of radius e/2 with centre on the sphere of radius one. Letting A = A(F, S) 

denote the constant an of the preceding argument, we obtain 

IrrePr(m ) ---- 0(e m"') .  
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Remark: There exists a discrete Kazhdan group with no nontrivial finite dimen- 

sional representations. This follows from [Gro: Chapter 5]. The result is that 

any lattice in Sp(1, q), q _> 2, has uncountably many infinite quotients which are 

simple and torsion. Such a quotient provides the desired example. For if there is 

a non-trivial finite dimensional representation then it is faithful (by simplicity), 

so the group is linear. However a linear non-amenable group has to contain a 

copy of the free group on two generators by Tits' theorem [Tit]. This contradicts 

the fact that the group is a torsion group. 

Let r be the group SL(n, g), with n >_ 3. Steinberg [Ste] has shown that 

any finite dimensional unitary representation of F factorizes through SL(n, g /kg )  

for some integer k. Using this and information on the characters of SL(n, Z/pT.) 

for prime p~s, it should be possible to improve the bound of Proposition IV for 

SL(n, Z), and also to obtain lower asymptotic bounds for Irrepr(rn ). | 

In the line of our work, there are numerous questions which remain open. 

Let us mention here the following ones: 

When is Sp(A(h)) connected? 

When does A(h) have eigenvalues besides 1 and -1 ? 

When is the spectral measure of A(h) absolutdy continuous with respect 

to the Lebesgue measure on [-1,1] ? 

Finally we remark that Proposition I of the present paper has been used in 

[HRV] to obtain results on exactness for group C*-algebras. 

Note added in proof: In a remarkable piece of work, D. I. Cartwright, 
W. Mlotkowski and T. Steger, Property (T) and .42 groups, preprint, Univer- 
sity of Sydney, 1992, the authors show by combinatorial methods that certain 
groups associated with buildings have property (T). Moreover they calculate the 
spectrum of h and obtain the exact values of the Kazhdan constants, using the 
estimates of Proposition I (6). 
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